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PREFACE

Aeroacoustics is concerned with sound generated by aerodynamic forces

or motions originating in a flow rather than by the externally applied forces or

motions of classical acoustics. Thus, the sounds generated by vibrating violin

strings and loudspeakers fail into the category of classical acoustics: whereas

sounds generated by the unsteady aerodynamic forces on propellers or by tur-

bulent flows fall into the domain of aeroacoustics. The term aerodFnamic

sound introduced by Lighthiil (who developed the foundations of this field) is

also frequently used.

Because most of the dominant noise sources in aircraft are aeroacoustic

in nature, the literature in this field is often closely connected with aeronau-

tical applications. Up to this time, no systematic text devoted specifically to

aeroacoustics has been written - probably because the field is stillin a fairly

early stage of development. But, after teaching this subject to a group of en-

gineers and scientists working on aircraft noise at the Lewis Research Center,

I concluded that such a text could serve a useful purpose. I felt that the book

should be moderately advanced and aimed at the reader with a knowledge of

9__Ji,.i .'._ech:mics and applied mathematics at the master's degree level.

There is sometimes a tendency in the literature to try to separate aero-

acoustic problems into an acoustic part and an aerodynamic part and to treat

each one separately. In this book, I have not attempted to make this distinc-

tion and have combined all the acoustics and aerodynamics needed to relate

the sound field to the basic parameters of the problem.

The first chapter is concerned with certain aspects of the acoustics of

moving media which are required in the remaining chapters. It also serves to

famtliarize the reader with some basic concepts of classical acoustics, its

main function, however, is to develop the mathematical techniques needed in

the remainina chapters. The second chapter introduces Lighthill's acoustic

vii
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analogy and applies it to the case where the solid boundaries do not directly

influence the sound field. This is the situation in jet noise. A detailed anal-

ysis of subsonic jet noise and a qualitative discussion of supersonic jet noise

are given. The third chapter develops the acoustic analogy to include the ef-

fect of solid boundaries. The results are applied to the discussion of the sound

generated by struts, splitters, propellers, helicopter rotors, and so forth.

The effects of a uniform mean flow are included in the fourth chapter, and the

concepts are used to obtain detailed analyses of the various fan noise mech-

anisms. In chapter 5 the acoustic analogy approach is abandoned, and a direct

calculational procedure is developed. It is applied to the prediction of com-

pressibility effects on the sound generated by a blade row. Finally, in the last

chapter the effects nf a nonuniform mean flow are included, and equations are

developed which are intermediate between Lighthill's acoustic analogy and the

direct calculational approach. These results are used to predict the effects of

the mean flow field on jet noise.

Credit is given to the original source of an idea whenever possible. Al-

though some of the analyses and formulations developed are somewhat original

or extensions of analyses in the literature, the omission of a reference is not

meant to imply originality on my part. In fact, I wish to apologize in advance

if I have inadvertently not given credit to the originators of any of the ideas

which appear in this text.

v_ii



CHAPTER1

Reviewof Acousticsof

MovingMedia
1.1 INTRODUCTION

In order to make the material in this book available to as broad an audi-

ence as possible, portions of the first chapter are devoted to a review of those

aspects of classical acoustics and the acoustics of moving media which are

necessary for understanding the theory of aerodynamic sound. In addition, a

number of the mathematical techniques needed in the succeeding chapters on

aerodynamic sound theory are developed. It is assumed that the reader is

familiar with basic fluid mechanics.

A vector quantity is denoted by an arrow (A) and the magnitude of the vec-

tor by the same letter (A). The components of the vector A are denoted by

A i with i equal to 1, 2, or 3. An asterisk (*) denotes complex conjugates.

Whenever possible, the capital and lower case of the same letter are used to

denote Fourier transform pairs with respect _o the Lime variable. Overbars

(-) denote time averages, and brackets /' denote space averages. The letter

T (without subscripts) denotes a large time interval. Other commonly used

symbots are defined in appendix 1. C.

1.2 DERIVATION OF BASIC EQUATIONS

We shall now consider an inviseid non-heat-conducting flow whose motion

is governed by Euler's equation (i. e. , the momentum equation for inviscid

flow_
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the continuity equation

_P+_.Vp+pV._=pq
8v

and the energy equation (which we write in the form_

_S +_.VS 0

where V is the vector operator

8Yl 8Y2 8Y3

= {Vl,V2,V 3 } is the velocity of the fluid, p is its density, p is its pres-

sure, and S is its entropy. The time is denoted by v, { yl, Y2,Y3 } are

Cartesian spatial coordinates, q denotes the volume flow being emitted per

unit volume bv any source of fluid within the flow, and _" denotes an exter-

nally applied volume force.

Now, in general, any thermodynamic property can be expressed as a

function of any two others. Thus, in particular,

p : p(p, S)

Hence.

dp = l__dp +/_-_-P/ dS

c 2 v%

(I-I)

(1-2)

(1-3)

(1-4)
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where

Consequently,

c2= 1

_" c 2

For a steady flow with velocity _'0' pressure

S O -= S(P0,P0) , and c o

P0, density P0' entropy

-= c(P0,P0) , equations (1-1) to (1-3) and (1-6) become

P0Vo • v v0= -VP0 "

v • P0V0 = 0

v0. v S0 =0

_'0 "v PO = c02 _'0" v PO -/

(1-5)

(1-6)

(1-7)

provided there are no external forces or mass addition.

Consider an unsteady disturbance with characteristic length ,\ traveling

at a propagation speed whose typical value is _ through a fluid in which the

velocity, pressure, and density are otherwise determined by equations (1-7).

This disturbance introduces changes in velocity, pressure, density, entropy,
2- - - , , , 2 _ 2 2

and c (u-v -v0, p =-p -p0, p - p -P0' S -S - S O, c _ c -co, respec-
nvely) as it passes by alixedobserver. 1 These changes ail occur on tne nine

scale Tp = I/f, where f = C/_ is the characteristic frequency of the disturb-

ance. The propagating disturbance is shown schematically in fibre I-i.

1The flow velocity _ induced by the passage of the disturbance is called t'.:,

acoustic particle velocity. It is entirely distinct from the propagation speed C of the
dist_irbanee.



AEROACOUSTICS

lu'l,p',p',s', or c2

f
_-----4

Figure I-l. - Propagating disturbance,

The amplitude of the disturbance is measured by the magnitude of the
9 T

fluctuations u, p , p , S , and c 2'. We shall consider only those flows for

which this amplitude is so small that not only is

lul << C" = _/Tp (1-8)

but also 2 p' <<(p0>, p' <<<p0 >, S' <<<S0>, and c 2' <<" c02>. Then the

amplitude of the disturbanc'e can be characterized by a dimensionless variable

such that

0 < E << 1 {I_-01

and

2The,' first inequality requires that the velocity induced by the disturbance be small

¢,_-,_ --_l _x_.th its propagation _peed. The remaining inequalities ensure that the fluc-
tx_ations in thermodynamic properties are small relative to their mean background

','." ].U 0?.



P'/<Po )

p'/(po )

s'/<s o>

c2'/<c_)>

REVIEW OF ACOUSTICS OF MOViriG _,IEDI,4

= o(E)

= O(E)

: o(E)

= o(E)

= o(_)

(1-10)

Inequality (I=8) involves the assumption (to be verified subsequently for spe=

cific cases) that for sufficiently small disturbances the propagatfon speed

is independent of the amplitude of the disturbance.

We allow _0 I to be of the same order as C. Then since the ch'ap.ges of

time and length associated with the disturbance occur on the scale of T and
D

X, respectively, it is reasonable to introduce the nondimensional variab_les 3

'_ = _r/Tp = f'r "Po = Po/<Po >

_i = Yi/X SO = So/<So>

PO = (Po - (Po))/(<Po)<v2)) U = u/C£

P = P/<Po) _ _ = s'/<So)'E

, _ 2' 2
_-' c ....,,'Co,,P = P '"'_PO'/ e . = '

')Recall that the pressure variations in a steady inviscid flow are of order
2,

(,')o) (Vo;.
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When these quantities are substituted into equations (1-1) to (1-3) and (1-6),

we obtain after subtracting out equations (1-7)

r_ vo -]---vo( +Ep') + v_+_'v(v0+_u) +p v0"V
L#

-- }
- <Po> Vp' +

_2<Oo> _f<Oo>_

[ - -]_o+_'_.+_ _o +_'_'/_+;'v-o -
_ _f

a-7 o _"_ +_T,.vE'=o

(_ 2,,r_, ,, '_+'_"'%_ po

(Po> [_'

<c02><po>L_'_

But since the nondimensionalization has been specifically chosen to make the

dimensionless variables of order 1, the inequality (1-9) shows that the terms

multiplied by _ in these equations can be neglected to obtain, upon reverting

to dimensional quantities,
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Po + %. v _ +_.v + p'v-"o. v-;o = -vp.

ap___'+ v. (po_ +p,;'o) =poq
8r

_S'

_'r
__ + _'.v S 0+ v%.V S' ---0

c02 \_r(_p' + _'0" v p'+ u" v PO)
+c2"_ O-vpO- _P' +v%'Vp'+u'VP0

Jr

(1-11)

These equations are frequently referred to as linearized gas-dynamic equa-

tions. We have shown that they govern the propagation of small disturbances

through a steady flow.

Perhaps the simplest nontrivial solution to equations (1-7) is provided by

a unidirectional, transversely sheared mean flow wherein

_'0 = iU(Y2) P0 = Constant P0 = Constant (1-12)

and i denotes the unit vector in the u 1 direction. This velocity field is il-

lustrated in figure 1-2. For several reasons the main emphasis will be on
4

cases where the background flows are of this type. The first is the relative

simplicity of this flow. Since the equations governing the propagation of sound

in a moving medium are, in general, quite complex, it is helpful to consider

one of the simplest cases. The second reason results from the fact that in the

following chapters only the effects of velocity gradients on aerodynamic sound

generation are considered and not the effects of gradients in thermodynamic

variables. Since the flow field given by equations (1-12) has only velocity gra-

dients and no pressure or density gradient, it is particularly suitable for il-

lustrating the effect of the former. Finally, it turns out that in many of the

4A more complete treatment of the acoustics of moving media from a different

point o£ view can be found in Blokhin_sev (rcf. 1).
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J2

_ U(Y21

Figure I-2. - Unidirectional, transversely sheared, mean
flow.

=_ Yl

cases for which the study of aerodynamic sound is important the mean flow

field is, to a first approximation, of the type given by equation (1-12).

Inserting equations (1-12) into equations (1-11) and eliminating p'

between the first and last equation shows that

dY 2 o]

1 DoP
+V._=q

PoC_ D_-

DoS - 0

D7

(1-13)

where

D O i:
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and we have dropped the prime on p so that i_ now denotes the fluctuating

pressure. This will be done whenever no confusion is likely to result.

The operator D0/D_ represents the time rate of change as seen by an

observer moving along with the mean flow. The third equation (1-13) there-

fore states that the entropy does not change with time for such an observer.

Thus, if the entropy were uniform and steady far upstream, it would have to

be constant everywhere. But equation (1-4) shows that, whenever the entropy

is constant,

dp =± dp
c 2

and the fourth equation (1-10) shows that for small £,

c 2 = c 2 + O(e)

Then, since c02 is constant, integrating the previous equation from the back-

ground state implies that

p _ P - P0 = p'

PoC_ PO PO

for S = Constant (1-14)

The quantity on the right is called the condensation.

Since

Dou - DO V._ + aU _u2

Dv D_- _Y2 _Yl

taking the divergence of the first equation (1-13), operating with

the second, and subtracting the result give

DO/D7 on
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1 D_ _u2 dU _ V. f_ P0 D0q (1-15)

V2P c02 D, -2 P + 2P0 _Yl dY2 D_"

Because this equation has two dependent variables, it cannot by itself be

solved to determine the disturbance field. However, in the special case where

the mean velocity U is constant, the last term on the left side drops out and

we obtain the equation

____1 D02 p = V. f'-P0 D0q (1-16)

V2p c02D72 D v

which (together with suitable boundary conditions) can be solved to unambig-

uously determine the fluctuating pressure p. Once this pressure is found,

the acoustic particle velocity _ can be determined from the first equa-

tion (1-13). Equation (1-16) is an inhomogeneous wave equation for a uni-

formly moving medium. The reason for this terminology will be clear

subsequently.

Equations (1-14) and (1-16) show that, if the entropy is everywhere con-

stant, the density fluctuation also satisfies an inhomogeneous wave equation

V2P c021D20Dn.2p= 1--( v"f-p0D0qlc2 D'r/ for S=Constant (1-17)

Finally, when U = 0, equation (1-16) reduces to the inhomogeneous wave equa-

tion for a stationary medium or simply the inhomogeneous wave equation

1 O2p_ v. f-p0 aq

V2P c 2 _2 _-

which forms the basis of the field of ciasszcal acoustics.

(1-18)

I0
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We now return to the general equation (i-15) This equarlon c.ose.v re-

sembles the wave equation (I-18) for a nonmoving n_edium with _ replaced

by D0 Dr. However, the additional term on the left side involves the velocity

and must be eliminated in order to obtain a single differential equation for the

pressure. To this end, we differentiate the Y2-Conlponent of the momentum

equation in (I-13) with respect to Yl to obtain

DO_u2 _ _2p + _[__E2
P0 Dr _Yl 8Y2 _Yl _Yl

1-19)

Then operating on equation (1-15) with D0/Dr and substituting equation I-i9)

into the result yield

,,0
D_ c0_D_

p_

_,o..... °o
dy 2 _y2_Yl Dr dY2 _Yl D 2

q 1-20)

Thus, in the general case of a transversely sheared unidirectional mean flow

the wave equation is of higher order (in two of the variables) than it is for a

uniformly moving medium.

1.3 ELEMENTARY SOLUTIONS OF ACOUSTIC EQUATIONS

In principle, all acoustic phenomena which occur in a _ransversel:,"

sheared flow can be analyzed simply by solving the wave equations derived in

section 1.2. In this section we shall obtain a number of simple solutions to

these equations which either illustrate certain pl_.ysicat principie_ vr _er-.'e as

tools to synthesize more complicated solutions. We shall first consider the

ease of a stationary medium.

1.3.1 Solutions of Stationary-Medium Wave Equation

The basic properties of the Fourier series and transforms which are used

in this text are listed in appendix 1. A. The notation and sign conventions

adopted therein are adhered to whenever possible.

,1



AEROACOUSTICS

Multiplying both sides of the stationary-medium wave equation

1 O2p_ v.?-p0 o'-_-q= -7

V2P c02 _ _'r

(1-21)

by e iw_ and integrating by parts over the appropriate time interval reduce

this equation to the inhomogeneous Helmholtz equation

\Co/j
= -r (1-22)

where P and F are the Fourier coefficients or Fourier transforms (depend-

ing on whether the process is periodic, stationary, or vanishing at =) of p

and y, respectively. (We shall henceforth refer to quantities such as P and

F simply as Fourier components.)

Solutions to equation (1-21) can be obtained by inserting the solutions to

equation (1-22) into th.e appropriate Fourier inversion formula. If the source

terms and boundary conditions are simple harmonic functions of time, the so-

lution p of equation (1-21) is also a simple harmonic function. That is,

p = pe -iw_"

1.3. 1. 1 Plane wave solutions. - The simplest case occurs when the re-

gion under consideration is all of space and there are no sources I_resent.

Then equation (1-22) becomes

Iv +(c-_)2] P = 0

The three-dimensional Fourier transform of this equation is

(1-23)

12
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_' u: _ k_ = 0

/

P = _(k')e ik'y dt_

But since xS(x) = O, this equation has the solution

where A is an arbitrary function of the unit vector

direction. Hence, the solution to equation (1-23) is

oc

ff0P=

where dK

When

where 0

Co/

dk dK=

0c

denotes the element of solid angle.

A(7) : A
6(0 - Oo)_(a - ¢o )

sin

and co are polar coordinates determined by

K = {sin b cos co, sin r sin _% cos O}

bear a similar relation to the fixed unit vectorand (}0' _0

becomes

(1-24)

K'=-k'/k in the k'-

A(K)e i(a'/c0)K" _ dK 1-25)

_I 0 , equation (1-25)

13
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'4' 2 Aeik0. Y

P =(_0I (1-27)

where k 0 = a,/c 0 and k0/k 0 = K0. Equation (1-25) shows that the general so-

lution of equation (1-23) is simply a linear superposition of solutions of this

type. Hence, the general solution of the homogeneous wave equation

V2p 1 _ 2p-- -- 0 (1-28)

can be expressed as a superposition of solutions of the type

w

P = Aei(k0 • y-w r)
where k 0 = w/c 0 (1-29)

called plane waves. 5 The constant A is called the complex amplitude of the

wave, 4_0 e arg A -= tan -1 _m A//_e A is called the phase constant, and

ko= • y - w'r + ¢b0 (1-30)

is called the instantaneous phase or simply the phase.

When the solution to equation Cl-28) is given by equation _1-29), the pres-

sure at each fixed point y executes a simple harmonic variation in time

whose amplitude is IA I- The angular frequency of the motion is _,' its

frequency f is f = w/2_ and its period Tp is Tp : 1/f. The vector k 0 is

called the wave number.

The pressure oscillations at every point have the same frequency and the

same amplitude IAI. However, the pressure oscillations at different points

will, in general, not be in phase. The difference ill phase between any two

points, say Y'I and Y'2' is given by __k'0" (_1- Y'2 ) and hence remains constant

in time. This also shows that the phase is constant on any plane perpendicular

to the k-0-direction. Since the trigonometric functions are periodic, with

'_Vhen comt)lex solutions to the wave equation are given, generally the solution to
the physical problem is tmderstood to be the teal part.

14
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period 2_, the pressure fluctuation at any two points will be in phase when-

ever the distance (k-'o/ko} • (_I - Y'2) between the two points measured along the

k'o-dire orion is

k'0 (F1_T2 )__ 2_c0_c0
= 7 -%c°

This distance, which we denote by >_, is called the wavelength. Thus, at any

time t = to, the pressure will vary along the k'0-direction in the manner

shown by the solid curve in figure 1-3 and will remain constant along any plane

perpendicular to this direction. At a time 1/4 period later, the wave will ap-

pear as the dotted curve. Hence, the individual pressure oscillations at each

point are phased in such a way that they result in a wave of unchanged shape

moving through the medium in the k'0-direction. In other words, the pressure

oscillations at each point are passed on to adjacent points with a phase relation

that causes them to propagate as a wave with unchanging shape. Every sur-

face of constant phase _ (given by eq. (1-30)), called a phase surface, must

be perpendicular to the _0-direction and move along with the wave, as shown

schematically in figure 1-4.

v- Position of wave at time t

'\ _ Position of wave 114 period later

"//\ ",/ ,,"\:,
Figure 1-3. - Plane wave propagation 1/4 period after time t.

15
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Figure 1-4. - Motion of phase surfaces for plane wave.

It can be seen from equation (1-30) that the common velocity of the phase

surface and the disturbance is c O. This velocity is called the speed of
6

sound. We have therefore shown that, at least in this special case, the ini-

tial assumption used in deriving the basic wave equations (i. e., that the prop-

agation speed of a small disturbance is independent of the amplitude of that

disturbance) is justified.

1.3. 1.2 Solutions in arbitrary regions. - When the region in which the

wave equation is to be solved is not all of space, the solution is usually not ex-

6For an ideal gas, this propagation speed e 0 is given in tot'ms of the al)_olLIt(:

temperature 6)0 of the background state by

c0= iP0 _--P0 =

which is equal to about .,.,o= m/see (1100 ft/see) in air at standard conditions.

16
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number of ei_enfunctions P r_ of Helmholtz's equation, called modes, which

are appropriate to the region raider consideration. Thus, the scdution tothe

wave equation will appear as the sum or integral (or perhaps both) of a number

- -iu.'7 in corn-
of simple harmonic solutions Pa(y)r Or upon expressing P

plex polar form, this becomes

A(_) ei[kS(y)-_' v J'

where k = _,/'c 0 and S and A are real.

We may regard the quantity @ =k[S(_) - c0r I as being the analogue of the

instantaneous phase which appeared in the pi'.me wave solutions discussed in

section 1.3. 1.1. At any given instant of time, 4, will be constant on any sur-

face S(_) = Constant. The surfaces of constant phase are called wave fronts

or wave surfaces, and the function S(y') is called the eikonal. However, the

amplitude of the wave A(y) is not necessarily constant on the wave front as it

is for plane waves.

Now the wave surface

I

k[S(y) - c 0"r] = _k = Constant = C 1

will. in general, move with dine. Thus. the point v on ,b _ C

,,viii move ___)the point v * &V :_ :ime _ .- ,_7 Mid

kIS(v) - c0? I = k[S(7+ _5 - c0(?+ _5v) t

: kJS(y) 4- VS-,@'- CO(V + a?)I+ O['_;v)':']

This shows that, to first order in 5,--,

at t:_pe ;-
1

VS. _ = Co&r

Hence, in the limit as _v--O.
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:co
=Constant

(1-31)

But since vS is always perpendicular to the wave fronts, VS/IvsI is the

unit normal to these surfaces (see fig. 1-5). And since (dy'/d'r)¢=Constant is

the time rate of change of position of a point which moves with the wave front

q5 =C 1 ,

Vp-IvsT E __Cl

is the velocity of the wave front 4, = C 1 normal to itself.

phase velocity, and equation (1-31) shows that

It is called the

(1-32)

_-_-C 1 attime r

gigure 1-5. - Wave fronts.

18
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I.3. I.3 Point source solutions. - Returning to the general solution (1-25).

we now take A to be independent of K. Then upon introducing the polar co-

ordinates given by equation (I-26) with the polar axis now taken along the _-

direction, we obtain a solution

p =(c_ A e sin 0 do de9

Vo/

(_0) ei(O"/eO)Y (_0) -i(_'/Co)Y
= 2rr aJ __A -2,-r _" __Ae

ly ly

to Helmholtz's equation (1-23) which depends only on the magnitude

In fact, it is easy to see that, if y _ 0, each of the terms

y of Iv].

(____,_ A ±i(c"/'c0)Y27r e

\Co/ y

in this solution is itself a solution to equation (1-23).

tion of solutions of the type

Hence, any superposi-

F 0 iw(+y/'c 0-7)
_e

4Try
(1-33)

satisfies the wave equation (1-28). The wave fronts are given by

(I_ = _:ky - w-r and the eikonal is equal to _:y so that

lvsl = 1

But in view of equation (I-32), this shows that the phase velocity is again

equal to the speed of sound co. Since the phase surfaces of the _c)lut.iopwith

the upper sigm move in the direction of increasinff y, this solution must rep-

19
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resent an outward-propagating wave.
7

sents an inward-propagating wave.

In any region including the origin

The solution with the lower sign repre-

y = 0, however, the equation

P±-- --F0 e+i(w/c0)Y

4ny

does not provide a solution to the Helmholtz equation (1-23) but rather satis-

fies the inhomogeneous Helmholtz equation

V2P ± + w(_0)" P± = -A6(y') (1-34_

with a delta function source term at the origin. In order to show this, we

shall need to use the divergence theorem

/rv. 7, dy dS
Jv

(1-35)

where A is any vector and _ is an arbitrary volume bounded by the s'_L-face

S with outward-drawn normal _. Thus, if _ is taken to be a sphere of ra-

dius r 0 centered about the origin y = 0 and if dD denotes an element of

solid angle, this shows that

"It will be seen subsequently that this t)loe of behavior is quite t_5oical of solutions
,)r :tnv r)ouneed source re_ion. Hence. solutions which behave li]<c (i "."_ctk' fl)r Iar%e

3' are calle(I outgoing' wave solutions, and solutions which behave like (1/'v)e -il<\' at'e

caii_'d Jrta_lng wave solutions.

2O
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+ P+ dy = r0

\ SY/y=r 0

d_ + p_2 dy dQ

= FO iro _0 e+l(_"/c0)r0

r 0

a'2 f0 ±i(cc/c0)Y
_: iF 0 __ _0 e dy

C0 ?o2

= -F 0

But since

and 5(y') = 0 in any region where

equation,

tion of the origin,

we conclude that P_:

we find that

/ 5(_)dy = 1

P+ satisfies the homogeneous Helmholtz

satisfies equation (1-34). By shifting the loca-

P+=- --Fo e+i(c</c0)r

4,-rr

with

r - ix- 7I

satisfies the Helmholtz equation

21
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V2p+ + (_______2 p+ = Fo6(X _ _')

\Co/

with a delta function source term at the arbitrary point _.

Taking the inverse Fourier transforms shows that

(where F 0

equation

p+_ 14_r /e-iW(vVr/CO) FodW= l'J--YOIT_-_O)4_r (1-36)

is the Fourier transform of _0 ) satisfies the inhomogeneous wave

t V2 1_2")P+=-V0(T)5(_-_2
c O

(1-37)

with a point source of strength _0 (7) located at the point _.

In order to interpret this result, notice that rp + is constant everywhere

along each line c07 - r = Constant in the r-v plane shown in figure 1-6.

Figure I-6. - Propagalion of spherical waves.

22
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It therefore represents an arbitr_'-Lry pulse propagatin_ outward in the radial

direction with unchanged shape. The propagation speed is again equal to the

speed of sound c O . Hence, p+ represents apressure pulse which propagates

outward with unchanged shape in the radial direction with its amplitude dimin-

ished by the factor 1/r.

Upon choosing 70 to be the delta function 5(t - r), it follows from equa-

tions (1-36) and (1-37) that

GO= 1 5(7-t+--_ (1-38)

4_r \ Co/
is an incoming wave which satisfies the inhomogeneous wave equation

= - 6( 7 - t) 5(7 - _) (1-39)

with an impulsive point source acting at the time t and located at the point

Since r is always positive, this solution together with all its derivatives

must certainly vanish whenever t < 7.

X°

1.3.2 Solutions to Acoustic Equation for aUniformly Moving Medium

Now suppose that the velocity U of the medium is constant so that the

wave motion is governed by equation (1-16). The equation closely resembles

the stationary-medium wave equation (1-18). This resemblance is not acci-

dental, for suppose we carry out the analysis in a coordinate system moving

at the constant velocity U. Then the medium ought to appear at rest, and

therefore the equation for sound propagation in this coordinate system ought

to be the stationary-medium wave equation. In fact, introducing the change

in variable

y = -_Uv for v = 7 (1-40)
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into equation (1-16) results in the stationary-medium wave equation

V' Oqp= ( 1-41)

where V' denotes the operator

T

_Y2 OY3

Solutions to the moving-medium wave equation (1-17) can therefore frequently

be obtained simply by transforming solutions to the stationary-medium wave

equation (1-41) back to the laboratory frame. Thus, transforming the plane

wave solution

-, , ,p = ei "Y -_' _') for k = _ w

co

to the wave equation (1-41) (with the source term omitted) back to the fixed

frame by equation (1-40) shows that

p = eik" _'_(_,',_'. [})

where _ = U_. This solution represents a plane wave in the fixed laboratory

frame with a frequency

' k'. _ w'(1 + M cos ei)

where M = U"c 0 is the mean-flow Mach number and 0 is the anffle between

the direction k/k of propagation and the mean flow direction (see fig. 1-7).

The phase speed of the wave is

Vp = _-a'= (I +Ikl cos sj)c0 = co . S cos U
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Figure 1-7. - Plane wave propa-

gation in a constant-velocity
medium,

This shows that the wave is traveling with a speed equal to Co, the prop-

agation speed relative to the medium, plus U cos 0, the component of the

velocity of the medium in the direction of wave propagation. The frequency in

the laboratory frame is increased if the medium has a component of its veloc-

ity in the direction of wave motion and is decreased if it has a component in

the direction opposite to the wave motion. However, the wave has the same

wavelength, _ = 2_/k, in both reference frames. This is simply a conse-

quence of the fact that the moving wave pattern must appear the same to both a

stationary and moving observer and only the frequency and apparent velocity

of the wave can differ.

1.3.3 Solutions to Acoustic Equation with Velocity Gradients:

Geometric Acoustics

Returning now to the general moving-medium wave equation (1-20), with

source terms neglected, we find that the Fourier components of the pressure

satisfy the transformed eq(lation

2p + + iM P - 2

-i + iM

- 0 (I-42)

where M = U/c 0 is the mean-flow Mach number and k = a'/c O. Then the so-

lution to equation (1-20) will be the sum or integra! of terms of the form

pe-iO:'r.

25



AEROACOUSTICS

As in the case where the mean velocity is zero, we write P in the com-

plex polar form

P : A(_)e ikS(_) (1-43)

so that the general term in the solution is of the form

A (y-._eik [S(Y"}-e 0 _'] (1-44)

Thus, the wave fronts (surfaces of constant phase) are given by _ = k[S(_) -

c 0 T] = Constant; and the phase velocity is given by Vp = c0/IvS I.
In order to simplify the situation, we shall consider the case where the

velocity varies slowly with Y2" Thus, we require that the leflgth L over
which U changes by a unit amount 8 be so large that

1
E =--<<I

kL

This means that L/_t >> 1/2Tr or ;t << L. Hence, the velocity changes occur

over a distance of many wavelengths.

We are interested in obtaining solutions to equation (1-42) which are ana-

logous to the plane wave solutions discussed in the preceding sections. Since

the mean velocity varies slowly on the scale of a wavelength, we anticipate

that equation (1-42) will have solutions which behave locally as plane waves.

Thus, suppose there exists a solution of equation (1-42) such that

kS(T) = kLSo(_') l

JA/7) : AO( )
(1-45)

8This is the length L for which

L dU

dy 2 - 0(i)U

26



where 77 _: L. SO(0) : 0 and the derivatives of S0 and A 0 with respect to

71i are of order 1 (i.e.. SO and A 0 change on the scale of _. Then expand-

in,,..4 S0 and A 0 in a Taylor series about 77= 0 shows that fox" kv : O(1] or

y _: 0(,_)

where

It follows that

a = %(0) + _'. (_A0)E: 0 + o(_2/

I_ ~ o(c2_]kS =kL .(VS0)_= 0 +

where we have put

Hence. for chan_es in of the order of a wavelength, the solution (1-44) re-

duces approximately to the plane wave solution

AofO)ei(k- y- _-'7)

ill order to find an expression for this solution which is valid for all

values of y (and not just for y = 0(;_)), we nondimensionalize the length scales

',_ ec, uati_m q l-421 with respect to L, introduce equation " _3] for P with

and S aiven bv equation (1-45_, and neglect terms of order ¢ = (kL_- _ ill the
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resulting equation. Then upon reverting to dimensional quantities, we obtain

for the real and imaginary parts of this equation, respectively,

VA. M 3M 1

-M _--_--AfvSI2+ 2 _M A _S _S

'_Yl ?Y2 _Yl _Y2

-0

and

=0

Since A , O, the latter equation has two families of solutions. The interesting

solution is

where U = _U is the velocity vector. Since the unit norrnal to the phase sur-

face _ is given by

and

fronts (see fig.

_1- TS

Jvs/

U cos !_ - _ • r_ is the component of mean velocity normal to the wave

1-8), equation :1-36) can be written as

ITS = +Q Uc°s 0tvSt)c0

28
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/I..¸

_, UcosB / \\

_ U =" .... Yl-axis

_-¢ -Constant S- Constant

Figure1.-8.- Velocityof phasesurface.

IVSI =
co

U cos e + co

Now suppose the flow is subsonic. Then since IvS

can hold and

> O, only the plus sign

The phase velocity Vp

IvSI =
co

U cos 6 + co

is therefore given by

co

Vp- tvSI - u cos _ + e 0

This is identical to the expression for the phase speed in a uniformly moving

medium given in section 1.3.2. In order to interpret this result, consider an

initially plane wave moving to the right in a velocity field which is increasing

in the upward direction, as shown in fig-ure 1-9. The phase velocity will be

larKer on the upper part of the wave surface than on thebottnm. '-Ienc¢. _he

velocity of the wave surface normal to itself will be larger on the top than on

29
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Figure1-9.- Bendingof phasesurfacebymeanflow.

the bottom. As a consequence, the wave front will bend in toward the lower

velocity region as it moves. Similarly, if the wave is traveling to the left, it

will bend upward toward the higher velocity region.

1.4 INTEGRAL FORMULAS FOR SOLUTIONS TO THE WAVE EQUATION

1.q. 1 General Formulas

Before proceeding with the material of this section, it is helpful to recall

three well-known integral formulas from vector analysis. Thus, let _(7) de-

note an arbitrary region of space bounded (internally or externally) by the sur-

face S(7) (which is generally moving), and let A be an arbitrary vector de-

fined on v(7). Then the divergence theorem (1-35) states that

Z v. 7,d77)
_1-47)i,

provided the integrals exist. If _/s(_, 7) denotes the velocity at any point _" of

the surface S(T), the three-dimensional Leibniz's rule shows that

[" /, r

I _d_:l P-._-_d_+l _r _¢ dS(_} (1-48)

j_ _7 Sd'7 ,(7) )
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f_r any functicm q, iv. 7; defined on _c). Fip.at_Tc. it Js a direct consequence

of the divergence the_rem that Creen's theorem

) Pn ?n/ )

(_v2C _ _v2_)d_ (I-49)

holds for any two functions _I, and _ defined on u. In this equation we have

written ?,P _n in place of r_- _P.

In this section these formulas will be used to derive an integral formula

which expresses the solution to the inhomogeneous, uniformly moving medium,

wave equation

D 2

v2p_ i___o p

c2 D 2

= ->,(F, _-t (I-50)

in terms of a solution G(F, "fix, t) of the equation

V2G 1 D_ G = -6(t - -r)_5(x - y)

c0
I-5_)

for an impulsive point source. 9 This result is used extensively in subsequent

chapters to deduce the effects of solid boundaries on aerodynamic sound

_eneration.

It was shown in section 1.3. 1.3 for the special case of a stationary me-

dium, that, equation fl-51) possesses a solution (givenbv eq. (1-38)) at all

points of space which together with all its derivatives vanishes for t - In

ant'," region l,, which does not include all of space, equation (1-51) possesses

many such solutions. Hence, let G denote any solution of ectuauon :_-51

satisfying the condition

(;
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D06
G= -0

Dr
for t v (1-52)

Then applying Green's formula to p and

respect to 7 from -T to +T (where T

that

G and integrating the result with

is some large interval of time) show

___pp_ p _O dS dT=

7) _n _n

(GV2p - pV2G)d_ d -:

T

/G D02 P-P DAG)d_
D _2 D __2

aT

[G7(_, 7) - 5(t - _-)5(y" - _)p ] dy" d 7

(1-53)

But since

(o o
D 72

p -p D2 _ D0P p U '" p

DT2 _7 D7 _Y 1 D7 "_T /

it follows from applying Leibniz's rule to the first term and the divereence

theorem to the second that
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H@F, CO,

tG D2
_0 p_

D ..;2

D0P p d7

Dr r=--T

T L Vn'( GD0p-Dr - p "-_v JDOG_
dS (y/d r

where

V'n -= (_s - "iU) • n
(1-54)

is the velocity of the surface normal to itself relative to a reference frame

moving with the velocity _U. The causality condition (I-52) implies tha{ the

integrated (first)term vanishes at the upper limit (r = T). At the lower limit

this term represents the effects of initialconditions in the remote past (ref. 2,

p. 837). Since in most aerodynamic sound problems only the time-

stationary 10 (and not the transient) sound field is of interest, this term will be
Ii

omitted. Hence,

T __D02P- p Dg%dy'dr= = ' __D0P - p "__-C--}dS(F)dr

r} D_-2 _'r2/ Vn D_- D "c/ ° "

IOscc appendix 1. A, section 1. A. 3.

liIt is assumed that the botmdatw condition is such that the effect of an_ initial

state will decav xxdth time. In anv event, it is ahwtvs possible to l't'quiFc that

I) DOP ') at -- -F
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Substituting this result into equation (1-45) and carrying out the integrals

over the delta functions show that

dr 7(_', "_)G(y', _lx', t)dy"

n DO -
+ dr (_,rlx, t) _ +-- p(y,7)

co
S(r)

• I

- p(_, r) _ + Vn G(y',rlx, t dS(y')=

2 if x is not in u(t)c

(1-55)

This equation provides an expression for the acoustic pressure at an arbitrary

point _ within a volume u in terms of the distribution y of sources within

and the distribution of the pressure and its derivatives on the boundary of _.

We make extensive use of itin chapters 3 and 4 to predict the emission of

aerodynamic sound in the presence of solid boundaries.

The region r_v) in equation (I-55) can be either exterior or interior to the

closed surface (or surfaces) S(r). However, for exterior regions the solution

P(_, r) of equation (1-50) must be such that the surface integral in equa-

tion (1-45) vanishes when carried out over any region enclosing S(r) whose

boundaries move out to infinity. This will usually occur whenever p,i_, r) be-

haves like an outgoing wave at large distances from the source. When 'applyin_

equation (1-55), it is necessary to be sure that the direction of the outward-

drawn normal _ to S is always taken to be from the region ,, to the region

on the other side of S.

The preceding argument applies just as well to the case where the sur-

face S(r) is absent. Hence, equation (1-55), with the surface integral

omitted, holds even when the region u is all of space. However, in this

cnse, there is only one possible solution fo _cuation (1-5tl which _atisges con-

dition (1-52) and vanishes at infinity. When U = 0, this is the function G O
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given by equation (I-38!. Then, in this case, equation (1-55) becomes

p(x,t) = y(_, 7)G0(y ", vl_,t)d_d_- (1-56)

This equation can be used to compute the pressure at any point from the known

source distribution _ whenever the region of interest is all of space.

More generally, if the surface S is stationary and the velocity U of the

medium is zero or tangent to the surface (so that _ • _ = 0), the normal rel-

ative surface velocity V'n becomes the normal surface velocity

Vn = Vs " _ (1-57)

and equation (1-55) reduces to the usual integral formula for the wave equation

f T f f T fl oGI I _(x't} if x is in v
d7 _'G dy" + d_" G LP_P_p dS = _

_n _n/ if x is not in v

(1-58)

Of course, when U = 0, p and G satisfy the inhomogeneous stationary-

medium wave equations

v2p 1 _p2 _ -Y(_', 7) (1-59)

v2G 1
e2G

- 5(t - "r)5(x - _') (1-60)
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1.4.2 Boundary Conditions: Green's Function

1.4.2. 1 Definition and properties. - Up to this point we have not explic-

itly taken into account the effects of solid boundaries on the sound field. The

presence of such boundaries imposes certain restrictions (that is boundary

conditions) on the allowable solutions to the wave equation.

For the small-amplitude motions consistent with the acoustic approxima-

tion the boundary conditions are usually linear; that is, they consist of linear

relations between p and its derivatives (and perhaps integrals) specified on

the boundary of the region in which the solution is being sought. For example,

in the case of a stationary rigid surface the boundary condition arises from the

requirement that the normal acoustic velocity _ • 6 vanish at the surface.

But in this case (since the mean flow, if it exists, must be tangent to the sur-

face), it follows from the first equation (1-13) (with f = 05 that

@P=n. Vp=O
_n

for _ on a fixed surface

This provides a condition which the solution p to the wave equation must sat-

isfy on the boundary.

Now whenever solid boundaries are present, equation (1-55) cannot, in

general, be used directly to compute the solutions to the inhomogeneous wave

equation (1-50) because the pressure and its derivatives which appear in the

surface integrals cannot be specified independently and the relation between

them is a priori unknown. However, whenever the solutions of equation (1-50)

satisfy linear boundary conditions, this difficulty can, in principle, be elim-

inated by imposing additional restrictions on the fundamental solution G. The

resulting function is then called a Green's function. We shall restrict our at-

tention to the case where the boundary surfaces are stationary 12 and the mean

flow, if itexists, is tangent to the surface. In this case, equation Ii-55'_re-

duces to equation (I-58).

• .?

'-if _hc motion of the surface has a ._mall ampli_tde, we c'_n treat tile surface :l_

stationary at its mean position and take account of its motion through botmdar_' condi-

tions at the mean position of the surface.
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A Green's function for a region v is defined to be a solution G(_, _-_rx, t)

to the inhomogeneous, uniformly moving medium, wave equation (1-51) which

satisfies linear homogeneous boundary conditions on the surface of S as well

as the causality condition (1-52). If the region u extends to infinity, we re-

quire, in addition, that G vanish as y-1 when y- _. Then the function G O

defined by equation (1-38) is the Green's function for the ease where the region

is all of space and the mean flow is zero. It is called the free-space

Green's function.

When the mean flow is zero, the Green's function satisfies the reciprocity
relation 13

G(_', ml_" , t) = G(_', -t [7, -7)

Inserting this relation into equation (1-59) shows that

v._(y', vlx, t) - 1 _2G(7, 7!_,t) = -5(t - 7)5(x - y)

x c2 8t 2

where

v2- +R

x

Thus, G(y', 7Ix, t) also satisfies the wave equation in the variables _ and t.

But since condition (1-52) shows that G vanishes for t <: 7, we can interpret

G as the pressure field at the point x and the time t caused by an imt)ulsive

source located at the point _ at the time 7. The causality condition (1-52/

then ensures that events will propa_ate forward in time. The moving-medium

Green's function can be interpreted in a similar fashion.

Suppose that it is desired to find a solution to the inhomogeneous wave

equation (1-50) subject to either of the linear boundary conditions

13
' We omit the proof of this important result. The interested rcadec i:_ rvferrcd to

ref. ,,'_ section 7. "o.
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Case A:

or

Case B:
_n_p+ b(7,p= a(y',_')p =-r}a(7' r)t

for 7 on S (1-61)

where b and a can be any function of _ and z. And suppose that a Green's

function can be found which satisfies the homogeneous boundary conditions

Case A:

Case B:

OG(y',_nT]X, t) + b(_', z}G(_', rlx, t) : .0"_

JG(_, 7Ix , t) : 0

for y" on S (1-62/

Then inserting the corresponding pairs of boundary conditions from equa-

tions (1-61} and (1-62) into the surface integral in equation (1-58) shows that

for x" in v

Case A: p(_,t) = L T d7 / 6(7, vl_,t)y(_, "r)d7

LT/+ dv G(y', TIx, t)a(7, 7)dS(y')

LT/Case B: p(x,t) = d_- G(_, _-]x,t)},(y', n-)dy

?G(y', vlx, t) a(_, TldS(_)
_n

(I-63)

Thus, once the appropriate Green's function has been found, the solution to

the wave equation ('1-50) subject _o _he linear boundary conditions (I-61) can

be expressed in terms of the volume source distribution 7 and the prescribed
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boundary values a by using equation (1-63). When no solid boundaries are

present, this can be accomplished by using equation (1-56].

Since a Green's function is a solution for the sound field emitted from an

impulsive point source located at the point y at the time % equation (1-63)

shows that in the general ease the acoustic pressure is just the superposition

of the pressures due to the volume sources _,(y, 7) and the boundary sources

a(7, 7).

1.4.2.2 Calculation of Green's functions. - There are two fairly general

methods for finding Green's functions. These may be referred to as the

method of images and the method of eigenfunctions. We shall first consider

the method of images.

1.4.2.2. 1 Method of images: Since the only sing-ularity of the Green's

function G(_:, r/x,t) occurs at the source point at the time the impulse is ini-

tiated, it must be of the form

G(7, T/x,t) = G0(7, 7Ix, t) + h(_, :'Ix, t)

where G O is the free-space Green's function (eq. (I-28)) and

of the homogeneous wave equation with no singularities in v.

(1-64)

h is a solution

The details of

the method are best illustrated by considering a particular example.

Thus, suppose that the mean flow is zero and let _ be the region Y2 _ 0

(shown in fig. I-I0). We shall construct ctGreen's function whose nor:hal

derivative vanishes on the solid boundary Y2 = 0 of this region. The function

h must be chosen so that this boundary condition is satisfied. Since

G0(y"'rl_'t)=_l 6f-t+_4_r

is a solution to the inhomo_eneous wave equation, and since thi_ ,_m_.qf}on _._

invariant under the transformation Y2 --Y2' it follows that (1/47rr')6( T- t +

r'/c0) , with r' = /_--y'l and _' = iy 1 - _Y2 + t_Y3' is also a solution to this

equation. But because -y' is never in v, this function is nonsingular in this

region and therefore satisfies the conditions imposeci on the func,qoi _, h.

Hence,
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Y2

Figure 1-10. - Coordinate system for half-space Green's function.

- r o)G(y','rl_,t) = 1 6 -t+ r + 1_1__5 -t + 1-65)
47rr 4nr'

satisfies the wave equation (1-59} in the region u. It is now east to verz_y

that it also satisfies the boundary condition

_G 0 at Y2 0

_Y2

and is therefore the required Green's function.

1.4.2.2.2 Method of eigenftmctions: We now turn to the metnou o_ _-_gel:-

functions. Suppose that the function b in the boundary conditions (1-62) is in-

dependent of 7. Then it can be seen from equation (1-51) that G depends on

- and t only in the combination - - f Hence, upon faking the -r-Fourier

transform of this equation and the boundary conditions (I-62) and introducing

4O
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l
--I

G (yix--), which is related to the Fourier transform g'_,,'T..,,T t)

Ga_(y'I_) = 2,-reic_t (_*o)

we find (after taking complex coniugates) that 14

1-66)

M 2 32 21
- 2iMk +k G ,(Tfx)

_y_ _Yl

= 1-67)

and that

CaseA: _ +bG w = 0
On

Case B" Go., = 0

for y" on S 1-6 8)

where as usual k - w/c O and M -= U/c 0 is the mean-flow Mach number.

Then it follows from equation (1-66) that the time-dependent Green's function

G can be determined from the solution G w to this boundary-value problem

by

G = 1__ e -iO-'(t-7) Gcc(_/x)dc_' (1-69)
2_"

It is frequently possible to solve the problem posed by eql_,ations (1-n7_

and (1-68) by expanding the solutions in terms of appropriate "eigenfunctions"

of equation (1-68). However, caution must be used in carrying out the inver-

sion integral in equation (1-69) since G will _enerallv have sin_-ularities

along the _,-axis. It will then be necessary to deform the contour of mteg:'a-

tion around these singularities in a manner dictated by the causality condition

(I-52).

14
It is easy to show that causality condition (1-52) _vdl be satistic,i if the _:,)luLi()n U)

this equati_m ,'el_resents an outgoing wave at itffinity.
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Figure 1-1.I. - Duct geomet_ for Green's function.

These ideas are again best illustrated by considering an example. Thus,

suppose the region v is the interior of an infinite, straight, hard-walled duct

(shown in fig. 1-11) whose cross-sectional area is A and whose axis is in the

Yl-direction. In order to construct the Green's function G w which satisfies

the boundary condition'

aGw - 0 for _ on S (1-70)

_n

itis convenient to first consider the functions ,I, satisfying the two-

dimensional Helmholtz equation

+ K2kl, = 0 (1-71)

in the region A and the boundary condition

m=0

_n
on the boundary D of A {1-72_
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It can be shown 15 that such solutions exist only for a discrete set of real

values, say Kn for n =0,1,2,..., of the constant K, called eigenvalues.

The corresponding solutions, _n' are called eigenfunctions. The eigenfunc-

tions satisfy the orthogonality condition

_A I(F if men
* (I-73)

'I_m_n dY2 dY3 = if m = n
n

where

/.

Fn Z [_nl 2 (1-74)- dy 2 dY 3

We attempt to expand the solution to equation (1-67) in terms of eigen-

functions _n to obtain

Gw = E fn(Yl)_n(Y2 'y3 )
n

Then the boundary condition (1-70) on the surface of the cylinder is automati-

cally satisfied. Substituting this expansion into equation (1-67), multiplying

* and integrating over the cross-sectional area A show, inthe result by _m'
g

view of equations (1-72/ to (1-74), that the expansion coefficients _m satisfy

the equation

2 d 2 d k 2 2 'l'm(X2' x3)
__ - 2iMk _ ÷ - _ fm = - _(Xl - Vl)

dy_ dYl Fm

where

fl -- _/_- M 2

!5See, e.g., ref. 2, ch. il.
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But the solution to this equation is

. 1fm - 2kmF m ;32

where

km Ck 2 2 2- _ Km (I-75)

And in order to ensure that this solution remains bounded for large values of

IXl - Yl / for all k and Km, we must choose the branch of the square root in

equation (1-75) so that it is equal to i times the absolute value of the radical
2 2

when k 2<_ Km. Hence,

= Y3 ) n (x2'x3)i V _n(Y2' _*

G_- '(_ I_') _/'j knF n

n

I![Mk(Yl-Xl) +kn'Yl-X_.1]}
exp -

¢2

(I-76)

Finally, substituting this into the inversion formula (1-69) shows that the

Green's function is

i Z'Pn(Y2 , Y3)'_n {x2, x3)C(7, _'lx, t) : _ rn
n

foe kn

iI_'(7-t)_-Mk(yl-X i)+-_ Iy l-X iI1

x e ,_2 ,3

!tl

(1-77)

The contour of integration in the complex w-plane which ensures that the

causality condition (1-52) is satisfied is shown in figure 1-12.
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C"
-coBk n

,rPathof integration
t" D m.

.)
", c_k n

"-Branch cut for square root

.. _ew

Figure1-12.- Contourof integrationfor inversionof Green'sfunction.

In a number of important cases 16 it is convenient to express the index n

in terms of a doubly infinite set of indices, say m and n. Then the eigen-

values are denoted by Km the eigenfunctions by @m,n' and equation (1-77),n'
becomes

i Z _Dm' n(Y2'Y3)@m' n(x2' x3)
G(y',"rlx",t) = _- Fm, n

m,n

oo i iw(T_t)+Mk(y l_X 1)+kn, m /Yl-Xl

x e L j2 _2 .. 1

kn, m

da: (I-781

For example, in the case of a circular duct of radius R, it is easy to see

by introducing the polar coordinates

16When the surface

tion (1-71) is separable.

D is a coordinate surface in a coordinate syst_:m whccc cqtla-
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1 Y3
¢0 = tan- --

Y2

into equation (1-71) that the eigenfunctions _m,n are given by

-im¢ 0
_m, n = Jm(Km, n _')e (1-79)

is the n th root of
where Jm is the Bessel function of order m and Km,n

I

Jm(Km, n R) = 0 (1-80)

rm, n _ / R2 m2 / 2= _-- Jm(Km, n R ) (I-81)

Km,n/

and m =0, ±I, e2, ...; n= 1,2,...

1.5 SOURCE DISTRIBUTION IN FREE SPACE: MULTIPOLE EXPANSION

1.5.1 Interpretation of Solution

The simplest case discussed in section 1.4 occurs when the mean flow is

zero and there are no solid boundaries present. The sound field due to a local-

ized _ource distribution V is then given by equation (1-56). But inserting the

expression (1-38) for the free-space Green's function into this equation and

carrying out the integration with respect to v show that

/-y ,t- r

p(x,t)= 1____ (_ . _0)d_"

4_ r
(1-82)
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where as usual

The integration is over all of space, but only those points where T(Y', 7) is non-

zero contribute to the integral. We, of course, assume that _. vanishes fast

enough as IY'I-oo so that the integral converges.

Comparing equation (1-82) with equation (1-36) shows that the volume el-

ement dy" emits an elementary wave

4_ r

which is exactly the same as that emitted from an acoustic point source of

strength V and that the resultant acoustic pressure field is just the super-

position of these solutions.

Since the time it takes a sound wave to travel a distance r is r/c0, the

time t - (r/'c 0) which appears in equation (1-82) is just the time at which the

sound wave had to be emitted from the point _ in order to reach the observa-

tion point x at the time t. It is called the retarded time.

1.5.2 Multipole Expansion

Expanding 17 the integrand in equation (1-82) in a Taylor series (with re-

spect to the variable r = x - y) about the point _" = x while treating the var-

iable _ as constant shows that

1 'The expansion peoeedure used in this section follows the treatment of D()al<

_cc'l. ;;).
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j ,k, Z=0

j,k, l=O

(r 1 -xl)J(r2- x2')k (r3-x3)Z

t t t
j.k.I.

:. _,t- r

. _2+k +l

_r] 1 8r k 8r_ 41;r __
r=x

_j +k+/

_xJ1 _x_ _x_
]. k. l. 47rx

Substituting this into equation (1-82) shows that

_'_j _J+k+Z ( -1}j+k+z (t____O1 (1_83)
p(_, t)= _xJ1 _x_ _x_ 4,-rx mj'k'/

j,k,/=O

where

mj,k,_(t) =

j k.Z

Y!Y--_2yl :. (',-', t/d_

j:k:l:

th
is called the instantaneous multipole moment and the j.k, Z term of the ex-

pansion (I-83) is called a multipole of order 2j-k+_. Of course, itis as-

sumed that the source distribution vanishes at ilffinitvrupidly ewmah, to en-

sure convergence.

Since as shown i_: :-;cction _ 3. 1. " ..: c. t_'_r:: .

4vx ,k, l
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is a solution to the wave equation and since, as can be easily verified, the

derivative of a solution to the homogeneous wave equation is also a solution,

each term in the nmltipole expansion (1-83/ must be a solution of this equation.

If there exist 3 N functions $. iN(v',t) which vanish together11, i 2, i 3, ....

with {heir first N derivatives sufficiently fast as y -oc such that

3

L _N_il' i2' i3''" "iN
7(_, t) = (1-84)

_Yi 1 aYi 2 8Yi 3 ..- _YiN

il,i2,i3,..-,iN =1

it can be shown 18 that

mj,k,l(t) - 0 for all j +k + _ <N

Thus, the first term in the multipole expansion will be a pole of order 2N

and, aside from.this, only higher order poles will occur in the expansion.

For example, we have seen that an applied force f results ina source term

in the wave equation of the form

cYi
i=l

Hence, the lowest order poles appearin_ in the multipole expansion of a solu-

tion to this equation will be poles of order 2 called dipoles.

.\11 cxanll)¿c _)l h_;w this asscrtiml c:ln })t, i_l'll\(,(t I'r)F the' (!:ls_, _. hcr_'

_i\crl il_ scc{iOll 2. _.
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I. 5.3 Behavior at Large Distances From Source

Since

1 _ O(x-2)

_xi x

as X -°c

and

(t:0)x xi a mj,k,/a mj,k, / _ =
ax i CoX at

It follows that for large x, equation (1-83) becomes

oO

p(x t) _ \x/ \ x/ \x / 1 x (1-85)
' . 4_x _'t) mj'k'/

j,k,l:0

Now suppose that the source distribution y is essentially confined to a

region whose size is of order L. Then the multipole moments are ,)f ordei"

= O(L j+k+/+3
mj ,k, l < 7> )

where ./7; denotes the average value of ), over the source region. And if

Tp is a typical period of oscillation of the sound source (so that Y = c0T p is
a _vpienl,.vavelen_th of the sound), it follows that the j,k,}th term in eoua-

lion 1-85) is of order

_ __ I(L_ j+k+/1( L _J+k+lL3(_/_ ' =_ _ L3(7,

x \TpC0/ x \_]
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Hence, if the source region is very small compared to a typical wave-

length, only the lowest order poles which occur in the multipole expansion

will contribute to the pressure field at large distances from the source. A

source distribution satisfying this condition is said to be compact. Thus, for

a compact source, all the poles which contribute to the sound field at large

distances willbe of the same order and this order will be equal to the largest

integer N for which the source distribution y can be expressed in the form

(I-84). For this reason, a source distribution which can be expressed in the

form (I-8i) is called a multipole source of order 2N. Clearly, higher order

poles will be much less efficient emitters of sound than lower order poles

whenever the source region is compact. If N = 0 (i.e., if y cannot be

expressed as a derivative which vanishes at infinity or on the boundary of the

source region), the source is called a monopole, or a simple source. We

have already indicated that when N = 1 the sotfrce is called a dipole source,

and if N = 2 the source is called a quadrupole.

Itcan be shown that any dipole source can be constructed by bringing to-

gether two equal-strength monopole sources in such a way that the product of

their strength times their distance remains constant. Simil_trly, any quad-

rupole source can be constructed by bringing together two dipoles, and so on

with higher order sources.

1.6 RADIATION FIELD

Again suppose that the mean flow is zero. An important special case of

equation (1-58) occurs when G is taken to be the free-space Green's function

G O . Thus, if [here are no volume sources present in v(i.e., _,- 0 in

;'),;_nserting the free-space Green's function .intoequation _!-58) shows _.._L....

fT _S <G _ _p(x,t) x in

dT 0 8p p _G 0--- dS=<

3n -_-n/ _ L0 x outside

(The formula obtained by substituting equation (1-38) into this formula and

performing [he integTation with respect to T is known as Kirchhoff's thec, rem.'i
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p

ii

Figure1-13.- Interiorandexteriorregions.

This equation applies to any solution

medium wave equation

p of the homogeneous stationary-

c o

p=O 1-87)

within any region v bounded externally or internally (or both) by the surface

S (as shown in fig. 1-13).

Let us apply equation (I-861 to a solution p of equation (1-87) in the re-

_ion i., exterior to a closed sua'face S and also to a solution PO of this c,r:.:-

tion in the region VO interior to S. Suppose, in addition, that the solution

PO takes on the same boundary values on S as does the exterior solution p.

Then for any point x in

6ct r 0 ;t__i) _ p d S

O'S \ _n 7 ,

p(_.t)

dr 0 'P__.__O_ P clS :

_' I1 r, ,
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We must realize that the direction of the normal in the first formula is oppo-

site to that in the second formula; hence, _/_n in the first formula is -_,/_n

in the second. Then subtracting these two equations shows that

AT /G Op(_, t) = d _- (_(_, 7)dS(_) (I- 88)

where we have put

_(_,T) - _--_P- OpO for _ on S
_n _n

Upon inserting equation (1-38) into (1-88) and carrying out the integration

with respect to 7 we obtain

P(x't)=--_-I j_$4_ rlc_( _''t-r_dS(_)c0/
(1-89)

Equation (1-89) shows that the pressure at any point _ of an exterior region

(which is devoid of any volume sources) is just the sum of the pressure

fields resulting from a distribution of simple sources over its bounding sur-

face S.

Now consider that case where all the sources producing the sound field

and all solid boundaries which reflect or interact with the sound are confined

to a finite region of space, and let S be an imaginary surface enclosing tkese

sources and reflecting surfaces as shown in figxLre 1-14. Then equation (1-89)

describes the sound pressure in the re,on exterior to S.

For a source-free region with zero mean flow the first equation f1-13_

expressed in terms of the variables x and t, becomes

_u
Po - -Vx-p

_t
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_ rcesr, eflecfincj surfaces, elc.

Figure 1-14. - Emission from bounded source

region.

But inserting equation (1-89) into this equation shows that

_t 4nPo _-_ ,t - -- -- ,t -c o c o _t

Hence, there exists a function h(_, T) such that

and

+_00 _t\

,= -- ---- ',t --P
I r y
JS

dS(y/ ( 1-9 l)

If Tp is a typical period of oscillation of the sound source and hence if

_"= c0T p is a typical wavelength of the sound, the ratio of the first to second

terms in the integrand in equation (I-90) is of the order X'/r. Thus, suppose

that the observation point is many wavelengths distant from the surface S;

that is, r->> X"(for any point _ on S]. Then the first term in equation (I-90)
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can be neglected compared with the second to obtain

S r2 _t c0/

Now suppose that ix! is much larger than the largest dimension of S.

Then for _ on S

r : 2 - 27. 7  -17,j2 i '-t
=x 1 2_-_+ [y 2_x x. y +O

x x 2 x

Upon inserting this result into equations (1-91) and (1-92) we find that

p(x,t) _ 1 ? h ,t - x+ x. dS(v)

4_x _t c 0 x c0/ "

u(x, t) _ l--L- i_p(x, t)

p0c0

(1-93)

where Fl = x,'x is the unit vector in the x-direction. The integral depends on

the magnitude x of the vector x only in the combination t - (x/c 0 ) and other-

wise depends only on its orientation. The latter quantity canbe characterized

by the two polar coordinates 0 and ¢ shown in fig_ure 1-15. Thus, the time

derivative of the integral in the first equation (1-93) depends only on the var-

iables t -(x"c0), 0, and co and therefore

p(x,t) _g _ x,0, (1-94)

4rrx c 0

The radiation field, or far field, is defined to be that region of _pace

which is far enough awav from the sources and reflecting object, in terms of

boti_ the wavelength and the size or cl_e source region, for the prc.s:_uro .tad
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/ "- x2

Figure 1-15. - Polar coordinates of observation point.

velocity to have the behavior given by equations (1-93) and (I-94). Ideally, a

source system can have a radiation field only when it is embedded in a uniform

medium of infinite extent. In practice, especially in aeronautical applications,

there is usually a region at some distance from the source system into which

no appreciable scattered sound comes from reflecting objects lying even fur-

ther from the source system and hence in which radiation fieldbehavior is ap-

proximately achieved.

Equation (1-93) shows that the velocity u = nur is purely radial, and its

magnitude ur is related to the pressure by

U
r

_ P

PoCo

(1-95)

Tim ratio PoCo between the pres_u,'e and voi,)ci:y ii: the :'adiat:_.: ::_: ,-

called the characteristic acoustic impedance of the n_eclium. It is equal to 429

newton-seconcls per cubic meter for air at 0° C and l-atmosphere pressure.
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1.7 ENERGY RELATIONS

1.7.1 Basic Definitions

In this section we shall define acoustic energy density E and an acoustic

energy flux vector I for any flow governed by the linearized gas-dynamic

equations (1-11). Perhaps the most obvious procedure which comes to mind

when attempting to introduce a suitable definition of these quantities is to sim-

ply neglect higher order terms in the expressions for the ordinary energy den-

sity and energy flux vectors of an inviscid fluid. However, this approach in-

troduces certain difficulties. Thus, when the energy density and energy flux

associated with the mean background flow are separated out, the remaining

terms are of second order. 19 But some of these _erms Ln'e ao_ sin]pt:,,prod-

ucts of two first-order terms and can therefore not be calculated from the so-

lution to the linear gas-dynamic equations (l-ll]. In order to obtain a useful

definition of E and I, we must require that they can be calculated entirely

from solutions to equations (1-11).

If t) is any volume which is free from external sources and enclosed by

a surface S, the net flux of acoustic energy through S must certainly equal

the time rate of change of energy within u. Thus,

j,,

But since this must hold for an arbitrary volume _), it follows from the diver-

gence theorem that E and _ must satisfy the conservation taw or ener_y

equation

I_iThc process used [n the derivation of the acroustic cquation,_ c_m bc th,,u_:lL _)l
as the first step in obtaining an asymptotic exptmsion of the flow varial)lcs in lX>\vcrs of

the (small) amplitude c of the acoustie disturbance. Since the vtu'jables which satisfy
the acoustic equations arc of the same order as tiffs amplitude, the) canbc termed
iiFs_-,_l'(icF qL!',LIIL-iL[,.'.S. -_llC next _raallcst teL'ms in the c>:!::',:_i,m ',.ill l_e ,[" _h,_ ,,_*der

of the amlflitudc Stluarcd and can be called sccond-orclcr Lct'll_,q. (:lcar[\-, tile i)r.'._luct
ol two lirst-ordcr [;(21'I115 JS [).[SO :t scc_)nd-ot'dcr Lcrm.
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_E
-- + V. I= 0 (i-96)
_r

in any source-free region.

It was shown by Mghring (ref. 4) that it is possible to define an E and "_

entirely in terms of first-order quantities which satisfy the conservation law

(1-96) by using the Clebsch potentials _?, (p, oz, and fl introduced in appen-

dix B by the relations 20

D'O - -O (1-97)
Dr

v'= V_+ SVu + _V_ (1-98)

where O is the absolute temperature and

D
= +_'.V

Dr _v

is the derivative following the motion of a fluid particle. Itis also shown in

this appendix that these potentials can always be chosen (provided the external

force is conservative) [o satisfy the equations

D(P- v2 + OS -H

Dr

Do/
-0

Dr
(1-99)

20The development given by Mohring is folh)wed fairly closely in this .suction.
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H_h+Iv 2- +_2 -
2 _7 _7 _7

1-1oo)

1-101)

9f_- H - K(p - SK/ aKfl (1-102)

where h is the specific enthalpy, Q is defined by

i= - V_

P

and K(p, KT?, and Kfl are constants.
Now consider a flow governed by the linearized gas-dynamic equa-

tions (1-11). Corresponding to this linearization the Clebsch potentials can

be written as 2 1

= _0(_) - KIT + 7/'

q_ = (PO -Kq_-+ (p

'(_= Q_ + Ot

where the primes denote a small fluctuating part (whose squares can be neg-

lected). Upon inserting these results into equations (1-97) to (1-102) the

zeroth-order equations become

21The zeroth-order time-dependent terms give maximal generality Wl'L].ie _till

lc_Lving _he zeroth-order physical variables _ueh as Vo, PO 2nd '_9 {ndeo_m,:kmr_,>f
time.
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I

and the first-order equations become

= re' + S'V_] 0 + SOVT/'

v%. v q0 = K/ - O 0

_'0 = V¢_0 + S0vT/0 + e_0v90

v'0"V¢°0 =v02+ @0S0 + K¢ o

_'0" VC_O = 0

_'0" V;_O = Kj

+f_0 -K

- H o

(P - SoKT/ - c_0K A = 0

+ ot0Vj' + VJ 0

_(1-1o3)

(1-104)

_T/' + v'0" v _/' = -@'__ + G'. v _/0
_-

_¢ . .v ¢ .u.V WO =Vo.U -9 -g

,.c_ +_:0. V e +u. Vot0= 0

c3 + v%-W J' + _'._ 3 0 = 0
_T

(1-105)

where

g-=h-@S (1-106)
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_.' ct'K_ =
+ u • v 0 + - S'K U P

A _f

_ ec2_ So eT__ _0 c'_--L-- 1-107)

_"r PO _'r _"r

(1-108)

Before using these potentials to derive an energy equation, we shall first

prove that the following two identities hold:

l +- ,):- l:_S' ___E%v_' _r_____'vs' _/3'v_ j. cu + vX' - --

_'o"\_ _' _ _ 7 _ _
(1-109)

['2 ,2 21
p' 8p' PO0 _S' a I _0 p i80_' - - PO S'

PO 8r 87 a=2Lp o _-_o}p°

(1-110)

If the third equation (1-11) and equations (1-105) are used to eliminate V'o on

the left side of equation (1-109), we obtain

v" \_r(_77'VSo+ _3___i'_rV_O-_S'____ v770 - _a--L_rV30) - O' _S'_r

= -u. [_S' + SO V 8_7____'÷ _ce____'V_30 + aO V ?3'

c_ + SO ?,:1'

But equations (1-104) and (1-107) show that this expression is equal to the

right side of equation (1-109).

Since

p, =(>_ p, +(_Po_ S'

V_O/So VSo£o
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and

(9 = -- p + --

\cOo/so VSo/oo

equation (1-110) is a consequence of equation (1-5) and the Maxwell relation

(see, e._.o , ref. 5, ch. XIX)

>O/ o 4

It can now be shown that the intensity

_ ' - _'_'o/ _o ' _'_ _' _ _-o= _ (pOu + - __ --
?r ?r/

satisfies a conservation equation.

I1-11) and equation (1-108) that

(1-111)

Thus, it follows from the second equation
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+(pou+pv o). vf

-P0V0 (S' V a_7'+ V _ + _ VS' + _ V_')
- . __ _, aB' _T/' aB'

Hence, upon using equations (1-109) and (1-110), we obtain the conservation

equation

v. T+ _Z=poWq (1-112)

where

, P0U2 ,2 2 +P0V0..... 1 /_@" S '2 (1-113)E-p ,+1 -P----c (S Vt? + _ V/3')+--p0, _ ,
2 2Po 2

0

Thus, with the acoustic energy flux defined by equation (1-111) and the acous-

tic energy defined by equation (1-113), the conservation law (1-96) holds in

any source-free region. The energy flux vector _ is called the acoustic

intensity. These definitions, however, are certainly not unique for, if _, is

any vector formed from the Clebsch potentials and the physical variables,

E - V • A and "I + a_/_T will also satisfy the energy equation (1-112).
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I. 7.2 Time-Averaged Intensity and Power

Ta_king the time averagve over the time interval T 2 - T 1 of the ener,_y

equation (1-112) shows that

E(T 2) - E(T 1)

T 2 - T 1
= -v • I + poXq

If the flow is periodic or stationary and if T 2 - T 1 is ta.ken to be the period

in the first case and equal to infinity in the second case, tile left side of this

equation will vanish. Hence, for any region which is free from acoustic

sources

v- _= 0 (1-114)

and this implies that

I" ndS=O (I-115)

for any surface S enclosing a source-free region.

The acoustic power crossing a surface S (closed or ot)ened, i:_ iefined as

• I C _.,()n.Hence, if S 1 and S 2 are any two surfaces enciosmo a source-free .... _

equation (1-115) shows that the total acoustic power crossing S 1 i._ equal to

that crossing S 2. It is this property, which is clearly a direct consequence

,3'2 t?,c solenoictal property (1-115) of thL .::_m.'-'t!C ._v*'.__,...,"-_;_".fro::: ",',':.2:':" _:

concepts of acoustic power and mean acoustic intensity derive their utilitv.

One slight inconvenience associated with the definition (1-111) for the

acoustic intensity is that it does not determine this quantity in terms of the

basic flow variables p , h . u, and so fortt_, but requires the use _,fthc

Clebsch potentials. Moreover '_,,_e potc,ntiai.s must _)c foundbv _'_"'
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additional equations (althou_h these equations are readily solved wheneve:" the

governing acoustic equations can be solved). We shall see in the next section,

however, that in certain important cases the Clebsch potentials do not occu_r

in the expressions for "i" and E.

1.7.3 Isentropic Flows

1.7.3.1 Interpretation of energy. - The case which is perhaps of most

interest is when the entropy is constant so that S = S0 = S' = 0. Equation f l-

B6) then shows that

_

r

Po+P

JPo

_ P'1 dp= -- + Second-order terms

P PO

Hence, it follows from equations (1-14) and (1-107) that equations (1-111) and

(1-113) become, respectively,

= v- t _d v - -
"i" +u. V0+O' (P0u+pv 0) - P7 P0V0 + K_3(D0u + /7) v0 (1-116)

E - + +pu. +p., + oe(Vj .P0v0 -K;p ) (1-117)
2

2P0C 0

5_ order to interpret the first term in equation (I-I17',. aotice d_at ;_r a

constant-entropy process the work done per unit mass by the acoustic pres-

sure p' against the surroundings is

-1

p d-=
P

t

,2+ t

p dp _ p

p2c2 2 22P0C 0

+ Third-order terms
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Hence, the work done per unit volume by this pressure is

,2
P

2
2PoC 0

+ Third-order terms

We can, therefore, interpret the first term, p'2/2P0C2, in E as the potential

energy per unit volume associated with the acoustic field.

The kinetic energy per unit volume is one-half the absolute value of the

momentum density squared divided by the density. The momentum density in

the acoustic wave is

pv - P0V% = p0 u + p'v 0 + Second-order terms

Hence, the kinetic energy per unit volume is

- __ + p u • v 0 + Third-order terms

The second term in equation (1-117) can therefore be interpreted as the kinetic

energy per unit volume in the wave. The third term is clearly the potential

energy per unit volume associated with the external forces.

In order to interpret the last term in equation (1-117), it is convenient to

introduce the vorticity vector, _' _ V × v. It is a measure of the average

angular velocity of the flow. Taking the curl of equation (1-98) shows that

,,,, = V :_ v = VS _ V_ + Va ::,' Vfi

The first term in this equation accounts for the vorticity introduced bv entropy

gradients, while the second term represents the vorticity introduced external

to the flow. A flow With zero vorticity is said to be irrotational. In such

flows the entropy must be constant. If the curl of a vector is zero, it can be

expressed as the gradient of a scalar. Thus, in the case )f an iL_enfr_p_c :.r-

rotational flow, no generality is lost if we assume that the scalar potential for
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the velocity is c (see eq. (1-98)) and that _ _tnd .:: are zero. T!'_e [:'._t

term in equation (1-116) is then a measure of additional ener,_4y in the wave

associated with the angular momentum of the flow.

1.7.3.2 Irrotational flows. - For irrotational flows, equations (1-116)

and (1-117) therefore reduce to

)P' u. go + _ (#0 u + prO)I= + (1-118)

0)E - + +p'E- _" + p'9' (I-119)

2P0c2

These relations were first obtained for isentrof_ic irrotational flows by

Chernov (ref. 6). However, Blokhintzev (ref. 1) had previously shown that

the definition (1-118) for the acoustic energy flux leads to a proper energy

equation for the case where the wavelength of the sound is very short com-

pared with the scale on which the mean velocity changes. 22

For regions of the fluid where the mean velocity v 0 and the potential

are negligible, equations (1-118) and (1-119) reduce to the definitions of I

and E used in classical acoustics

v_

I=pu 1-120)

E -

p,2 po u2
4- --

2P0C02 2

1-121)

1.7.3.2. 1 Relations for radiation field: One important region where it is

% •usually possible to assume _i_at '.) = 0 _.nd therefore thai ,:,;u_:_,:_:- . 1-

120) and (1-121) hold is the radiation fielcl. In this region the velocity is re-

lated to the pressure by equation (1-93). Hence, it follows from equation (1-

120) that the intensity is in the radial direction _ and is given by

'22Which is the ease treated in section 1. '_ '_
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where

I- p2

PoCo

(1-122)

Taking the appropriate time average of equation (1-122) shows that

m

I= .p2

P0c0

(1-123)

Thus, in the radiation field the mean acoustic intensity is proportional to the

mean square acoustic pressure. Now most microphones in most cases meas-

ure root-mean-square (rms) sound pressure, and the rms fluctuating pres-

sure at the ear is believed to be most closely related to the sensation of loud-

ness. Since equation (1-123) only holds under special circumstances, the

acoustic intensity does not always provide a measure of the signal which would

be sensed by the ear or a microphone.

An ear, and usually a microphone, is basically a diaphragm encased in a

reflecting object (head or microphone housing). If the microphone housing is

not small compared with the wavelength, the pressure it senses is not the

same as would exist if the microphone were not present. This difference ;.:_

the result of the pressure increase caused by the sound radiated from the

housing.

Equations (1-94) and (1-123) show that

162_2x2p0c 0 Co

But it is shown in appendix 1.A that the time average is independent of trans-

lations in time for any periodic or time-stationary process. Hence,
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I

I - 1 g2 (t,0, #0)

16_2p0c0x2

Thus, the average intensity in the radiation field is proportional to

Ifthe sound field is periodic so that

-2
x

oo

P = 2 Pn e
n=-oo

-i_,nt

it follows from equation (1-123) and equation (1-A7) that

_ I E IPn/2

P0C0 n=-=c

This equation shows that we can interpret the quantity

- /Psi2
I =

n

P0C0

as the average acoustic energy flux being carried by the n th harmonic. It

can therefore be called the intensity spectrum. It follows from equation

(l-A6) that it is related to the normalized pressure autocorrelation function

F(7) by

OG

2-r(_) = p(t)p(t+ _-)_ ine

P0C0 n=-_

-icen-r
(1-:124)

If the sound field is time stationary, it follows from equation (1-123) and

equation (1-A 22) that

oo
T- 1 Sll(CV)dce

P0c0 __o
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where Sll(_:) is the Fourier transform of the pressure autocorrelation func-

tion p(t)p(t + _-). Hence, we can interpret the quantity I w _ Sll(a,)/P0c0 as

the average acoustic energy flux per unit frequency and it can therefore be

called the intensity spectrum. It follows from equation (l-A21) that it is re-

lated to the normalized pressure autocorrelation function F(7) by

F(7) = p(t)p(t + _j - T_.e'ie"_'do. '

P0c0

(1-125)

These relations have only been shown to hold in the radiation field and do not,

in general, hold at points near the source region.

1.7.3.2.2 Unidirectional transversely sheared mean flow: When the

mean flow is given by equation (1-12), we can take

K = O 0 K p= -OoS 0 +h 0 K3 = 1

Yl 1
d0 = 1 U 2 30 _70 = 0 =:-_-- _0 _UYl

and equations (1-103) will be automatically satisfied. When these relations

are substituted into equations (1-105) (with vO = _U), we obtain a set of first-

order equations in the variables _- and Yl which can easily be solved for the

perturbation potentials. However, these solutions are best left to specific

cases. A solution is carried out for a duct flow in reference 4.

1.8 MOVING SOUND SOURCES

The sound emission from any real moving source is generally complicated

bT such effects as the interaction of the sound field with the (usually turbulent)

flow about the body or even a back reaction of the flow on the sound source.

However, in order to illustrate the essential features of the process, we shall

consider the sound emitted from an ideal point source where no such flow re-

actions are present. We shall also limit the discussion to the case _,here the

source is moving uniformly (no acceleration). As will be shown in chapter 2
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the acceleration of the source can result in sound emission even if -he source

has no oscillations of its own.

1.8.1 Solution to Equations

Consider a source moving with a constant velocity T 0 through an infinite

medium otherwise at rest. The volume source density is then given by

q(_, T) = %(7)_(_ - T0 7)

Such a source could result, for example, from the heating and subsequent ex-

pansion caused by a modulated beam of radiation focused on a point moving

through the fluid.

The wave equation (1-18) for the sound pressure now becomes

-%-PO --
87

It is convenient to introduce a velocity potential _h by

p - _gJ (1-126)

so that

V2qj 1 82_ _ -P0q0 (_-) 5(y - T 01"}

c0

Upon comparing this with equation (1-59), we find that equations (1-38) and

(1-56) show its solution to be
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PO qo(r) r - - - d.
- r - ,%(y - V Orldy

4_r r
L

I <po qo/_) Ix- vo, r
=_ 8 -v dr

4_ J_-_o _[ Co /
(1-127)

In order to evaluate the integral, we use the identity (which holds for m_y

functions f and ,, of r]

i d ve

where _1e is the i th root of

Then upon putting

i) 0 (1-129)g re
z

!x - V07
,r= _- 7-t

Co

it follows that

O_d,,._ _ V r-'_ 0 " X

dr C01r._ - _0 rr,

+1
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and therefore that equation (1-127) can be written as

_,(x,t) - Po
i
'e

1

-_'0" x
i I

+ Irx - _¢o'e,
c o

(1-130)

where 7e is the i th solution of

c o
+ me - t = 0 (I-131)

This equation, being quadratic in "re, will, in general, have two roots which

we shall denote by 7e_. There will then be two terms in the solution given by

equation (1-130), which we shall denote by _b+. Hence, if we introduce the

source Mach number

MO _ _0

c o

and the vector

(1-132)

m

: x - v0:; c1-i33)

the two terms which appear in equation (1-130) can be written as

()
_=(x, t) = __1 P0q0 7e_

47; R+I1 _ M0 cos 0

(1-134)

73



AEROACOUSTICS

where

__R+

M 0 R _:

is the cosine of the angle between the vectors R± and _I 0.

(1-131). which determines the retarded time, can be written as

R ±
Te=t---

c O

(1-135)

And equation

(1-136)

1.8.2 Interpretation of Solution

Equation (1-133) shows that R is simply the vector between the observa-

tion point x and the position of the source at the time 7e (see fig. 1-16).

But equation (1-136) shows that the length R of this vector is exactly equal to

the distance c0(t - Te).which the sound wave, arriving at _" at the time t,

has traveled in the time interval t - 7e. The sound wave emitted by the

source at time _-e will therefore just reach the observer at _ at the time t.

Hence, R is the distance between the observation point and the source point at

the time of emission of the sound wave, and "re is the time at which the sound

wave arriving at _ at the time t was emitted (or the retarded time_

Figure 1-16. - Orientation of source and observer.
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Inserting equation (1-136} into equation (1-133) and squ,'_ing the result

gives

Ix - root12 To
2 --" Ix-%t_(t- 7e)+ - (t- _e)2=0

This equation can be solved to obtain

_-_o(_-_e_): %. (x-_o_@0 Cx-_0_]_
1 - M02

+(,-_g),x-%_,_.

(I-137)

If M 0 is less than 1 (i.e., subsonic source motion), the radical will al-

ways be larger than the first term in the numerator. But since R must be

positive, only the plus sign in equation (1-137) can hold. Thus, for subsonic

source motion, there can only be one source location from which the sound

arriving at x at time t can be emitted.

When the source motion is supersonic, both positive and negative roots

can occur. But then the radical will be imaginary (i.e. , no solutions for R

will exist) unless

_/M_ - 1/ tX- Tot i'

MO II_O_o0" (x - Tot)

< 1

Upon defining the Mach angle _ by

O/ = COS

_i_0 2-I
_ sin-1 1 _-

M 0 M 0 2
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and putting

_o (x - _¢ot)
-I M0

6 = COS

rx - Votl

(as shown in fig. 1-17) we see that this condition requires that the observation

point lie within a cone having its vertex at the source and a semivertex angle

equal to the Mach angle. It is called the Mach cone. Thus, if the observation

point is outside the Mach cone, no solutions will exist. In order to interpret

these results, consider the circles shown in figures 1-18 and 1-19. They cor-

respond to the surfaces which "contain" the sound emitted by the source at

certain fixed instants of time, say t = 0, tl, t2, and so forth.

Figure 1-18 is drawn for the case where source speed is less than the

speed of sound. It shows that only one of these surfaces can pass through any

given observation point O. The sound on the surface passing through the

point O in the figure was emitted by the source at the time t = t2 when it

was located at x s = Vst2.

\
Observation

p°int_g._^t. _

/_ /°

Figure 1-17. - Orientation of observationpoint relative to Math cone.
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cot

co(t- t 2)

colt. point 0

Soundemitted

at t-t! -'_.,

Soundemitted
at t-O

Figure1-18. - Subsonicsourcemotion(attime tL SourceMach
number, MO, 213.

Notice that the surfaces are closer together in the forward direction (and

farther apart in the backward direction) than they would be if the source were

stationary. Thus, more of these surfaces will pass an observer in front of

the source in a fixed interval of time than if the observer were behind the

source. Since the total amount of energy emitted by the source in this time

interval is carried between the first and last surfaces enclosin_ this interval.

we anticipate that the intensity of the sound (energy flow per unit time) re-

ceived by an observer in front of the source will be larger than the intensity

received at a point behind the source.

When the source is moving faster than the speed of sound (i.e., super-

sonic source motion), the situation is quite different. In this case the source
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X Source position at time of

emission of wave front

one

r- Mach_" \ _i , an le, a

Vot 1 Votz , g

) W
\ Co(t'tl)\/ / $_ • _'f_ "- Sound emitted

\ _ " \ "_ / colt- t_/<'/ at t- t3

Cot X_ / _Sound emi,ed "

\ \ /\ _ ,t,.,_
_._ / __se rvation .... '

_i ,oint0
_, "st_°nd_m""e""_l

Figure 1-1g. - Supersonic source motion (at time tL

overtakes the sound it emits, and the surfaces "containing" the sound take on

the configuration shown in figure 1-19. They are now all tangent to the Mach

cone and there will be at any time t two such surfaces passing any fixed ob-

servation point O located within the Mach cone. The sound reaching these

surfaces will have been emitted in the past by the source when it was at two

different positions. (In this figure the sound was emitted at the times t 1 and

t 2 when the source was at the positions _+s = V}0tl and _s = V0t2 ' respec-

tively. ) An observer located outside the Mach cone will hear no sound at the

time t. Thus, an observer located at a fixed point will hear no sound until

the Mach cone passes. After that he will hear, at any instant of time, sound

coming from two different points. When the Mach cone passes the observer,

the sound field will be particularly intense since all the surfaces coalesce

along thLs line.

1.8.3 Explicit Expression for Pressure Field

In order to obtain an explicit expression for the pressure .quctuations,

notice that equations (1-131) to (1-136) show
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-R_(1-%cos_=)--cx"....VoW)_-_o(1 %)R-2'_ II-ISS)

Differentiating this equation and using equation (1-137) therefore shows that

_o(_o-_o__)
_ _(_-_o_oso_):_:%_ _ _-_cOdt

and hence that

I dR + M 0 cos 8+
- (1-140)

co dt 1 - M 0 cos 8+

Thus, equation (1-134) can be inserted into equation (1-126) to obtain

p+ _$+
- - _Po

_t

(cos 8+ - R±- 0,v0n0:01
+

_"_0-_0co__)_ _(,- _0co__)_
(1-141)

where

dt/t:t_(!R±/c 0

- q0 -

)

For supersonic source motion, equation (1-141)becomes sing_alar whenever

the angle 8 + equals cos-I (I/M0)" It can be shown 23 that this occurs only

when the observer is on the Mach cone.

If the source mo[ion is subsonic, the first term in equation (I-_4_ _-''!!!

always dominate at large distances from the source. The equation then re-

sembles the solution for a stationary point source. The principal difference

23By substitutingequation (1-137) intoequation (1-138) and recallingt}_.at::ii,::)b-

server is on the Mach cone only when the radicalin equation (1-137) vanishes.
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is the convection factor {I - M 0 cos _:)-2, which appears in equation {I-14

and causes the pressure to be higher in the forward direction and lower in the

backward direction.

1.8.4 Simple Harmonic Source

For a simple harmonic source, q0(t) = Ae "iwt and equatio n (1-141)

becomes

p+= +P0C0A [-ik Mo(c°s 04. " MOl le -iw[t-(R_/cO)]

This formula is clearly nonperiodic since 0 4. and R4. depend on the time.

However, if the observer is far enough away from both the source and the

Mac.h cone, these terms will only change by small amounts during a period

and can therefore be treated as constants. Hence, the pressure will be ap-

proximately periodic with slowly changing amplitude and phase. In this case

it still makes sense to talk about the frequency of the sound field.

In order to show this, we expand R4. and R_ =- R+(1- M 0 cos 8+1 in

Taylor series about some fixed time t O to obtain

dR+(to ) 1 d2R+(t0 )
= R*(t 0) +_ (t -t O) + (t -t0) 2\ + ...R4.(t)

dt 0 2 dt 2 \

(1-142)

R_(t)=R_(to)+_

Then substituting the relation

dR_(t O)

dt 0
(t - _0 i + ...

I d2R _:

c 2 dt 2

M02 sin2 04.
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_)-ether wi[h ('qu'4ti(ms!1-139)and (1-140) into these e_)anslons 4now:< that

R=(t,i R : ttO] t - t o
- - (t - to1 _-

Co ('0 1 - M 0 cos {i_

- 1 Mgsin2'_ Co(t -to)+ t(1- o

where we have put P0± _ 0+(t0 )" But since t - t o will change, by. the amount

27, ,, during one period, the second terms in the square brackets will be neg-

ligible during, this time interval whenever

R±(t O) >>

2nc O M_

co (1-M 0 cos 8_) 2

Thus, when the observer is many wavelengths distant from the source i)osition

at the time of emission (and not too close to the Maci_ cone if ti_e source vefoc-

it>, is supersonic), equation (1-142)becomes approximately

p-- _ -

Ii I R±(t0)
exp a., --

[ co
Mo

1 - IVI0 cos i_/J)

4rrR±(t0)(1 - M 0 cos _)2

(1-143)

which shows that the pressure is approximately periodic. However, its fre-

_-ency is equal to
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1 - M 0 cos 0 0

and not the frequency w of the source. This is the well-known Doppler shift

in frequency. As 00+ varies from 0 to Tr, the frequencv, a,' varies from

a'/(1 - M 0) to w/(1 + M0). Hence, the frequency is increased when the source

is moving toward the observer at the time of emission and reduced when it

moves away from the observer.

For subsonic motion, only the plus sign can hold in equation (1-143). As

the source approaches the observer the frequency will appear higher than the

source frequency. It will then progressively deepen in pitch as the source

moves past the observer.

When the source velocity is supersonic, the observer will hear the sound

only after the source has passed him. In this case, there are two locations of

the source from which the sound reaching the observer at any instant of time

is emitted. At the location corresponding to the plus sign in equation (1-143}

the source is moving away from the observer at the time of emission, while at

the location corresponding to the minus sign it is moving toward the observer

at the time of emission. An interesting feature of the supersonic source

velocity is that the sound fields from the two different emission points which

arrive simultaneously at a given observation point can have different phases

and therefore interfere with one another.

1.8.5 Multipole Sources

The results obtained in this section can be extended to multipole sources.

Thus, by putting

p _

_N@il'i2' " " " 'iN

_Yi.l _Yi2'"''_aYiN

in the equation
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_NMil'i2'" "" 'iN(7) 6(7 - T O'r)

_Yi 1 _Yi2," • • , _YiN

for the sound pressure from a point multipole source of order N and strength

Mil ,i2,... ,iN in uniform motion, we see from the results obtained for a

monopole source in section 1.8. 1 that

1 _N Mil, i2,..., iN("re)
p = -- (1-144)

4;r _Xil Oxi2'" " " ' OxiN R+I 1'- M 0 cos 0 ± !
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APPENDIX 1 .A

FOURIER REPRESENTATION OF FUNCTIONS

1.A.1 Periodic Functions

Any sufficiently smooth periodic function of time f(t) with period Tp can
be represented as a superposition of simple harmonic functions by the Fourier

series

f(t) = _ Cn e-inwt (l-A1)
n- -_

where _,, = 2_//Tp is called the fundamental angular frequency, f = w/27r is
the fundamental frequency, and the terms with n _ 0 are called harmonics.

Each Fourier coefficient C n is determined by

_ 1 /'/TP f(t}e inwt dt
C n (l-A2)

Tp 4

The absolute value of this coefficient ICnl is called the amplitude of the n th

harmonic, and the argument of C n is called its phase. Sometimes C n itself

is called the (complex} amplitude of the n th harmonic. When the function

f(t) is real, the Fourier coefficients satisfy the relation

C_n = C n for n = 1,2,3,... (1-A3)

Motion which can be represented by such a series is the basis of all mu-

sical sound. In particular, the vibrations of wind and string instruments can

be approximately represented in this way, and the "tone quality" of the souncis

produced is determined to a great extent by the relative amplitudes of the var-

ious harmonics present. Thus, representing a periodic function by a Fourier

series is more than just _ means of repre_entine eomnlex functions in _erm:_
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of simpler functions. It somehow corresponds to the way we hear and distin-

g-uish sounds.

The periodic cross-correlation function

• f0Tpfl (t)f2(t + v) - _1 •
Tp fl (t)f2(t

of any two periodic functions

+ 7)dr ( 1 -A4 )

oo

fl (t) = E Ane
n=_oo

-inwt

OD

f2 (t) = E Bne
n=_oo

-inwt

satisfies the relation

oo

f_(t)f2(t+ _') = E An*Bn e-i°_n
I'l=_Oo

(1-A5)

which shows that A*B is the Fourier coefficient of the cross-correlation
n n

function. Hence, in particular, the autocorrelation function fl (t)fl(t + "r)
satisfies the relation

_o

f_(t)fl(t + 7) : E IAnl 2 e-inw7
n:_oe

and the mean square value Ifl(t)/2 of fl(t) satisfies the relation

oo

tf_(t_/2-- Z IA.I2
n= -_

(l-A6)

(l-A7)
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The cross-correlation is independent of translations in time,

that

* (t+ to)f2(t + t O + _r) = fl (t)f2(t + _')fl

which means

(I-A8)

for any to.

1.A.2 Aperiodic Functions Which Vanish at Infinity

Of course, periodic sounds represent an idealization since they must be

defined so that their form repeats continuously throughout all time while all

real sounds must certainly be of finite duration. A periodic sound could, of

course, be represented by a periodic function which is equal to the sound with-

in the interval where it is nonzero, but it would not represent the sound out-

side this interval. However, it can be shown that any sufficiently smooth func-

tion f(t) which vanishes sufficiently rapidly at t = +_o can be represented by

the Fourier integral

jf_
f(t) = F(w)e -iu'td_, (I-A9)

where the Fourier transform F(w) of f(t)is determined by

ooF(w) = __I f(t)eiwt dt (I-A10)
2_ ./-_

The integral shows that any function which vanishes sufficiently rapidly at in-

finity can be represented as the superposition of harmonic functions of all pos-

sible frequencies w,/2_.

The quantity IF(o_) 12 is called the spectral density of f(t) at the fre-

quency w/2_. For small Aw, an electronic filter which cuts out all fre-

quencies except those between w/2rr and (_ + Aw)/(2_) would deliver a meas-

arable power proportional to IF(0:) 12 times _._,;2._, the width i_f /he .¢re-

quency band passed by the filter.
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A sufficient condition for the Fourier transform of a function

is that it be a square integrable function. This means that

Z_ If(t)12 dt <

,_t; to exist

(1-All)

The cross-correlation function

oo* f_ (t)f2(t+ T)dtfl (t)f2(t+ "r)=
(1-A12)

of any two square integrable functions

fl(t) = f_ Fl(W)e-i_°t dw

Zoof2(t) = F2(w)e-iC°t dee

exists and satisfies the relation

/_c _-dwfl*(t)f2(t + _')= F I*(¢o)F 2(w)e-iW (I-A 13)

which shows that the cross-power spectrum F l(w)F2(w) is the Fourier trans-

form of the cross-correlation function. Hence, the power spectrum IFl(W) 12

is the Fourier transform of the autocorrelation function fl (t)fl(t + 7). Some

useful properties of the Fourier transform are listed in table 1-I.

It is also convenient to consider Fourier transforms with respect to spa-

tial variables. In this case, however, the previous results need to be ex-

tended to three dimensions. Thus, equation (l-A9) can be generalized to show

that the function f(_r)can be represented by the Fourier integral
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TABLE 1-1. - SOME PROPERTIES OF

FOURIER TRANSFORMS

Function, Fourier transform,

f(t) F(_0

(.i_) n F(w)dnf(t)

dtn

_(t)

_' f(t)g('r -
t)dt

la le -tab_ F(ao.q

i

F(w)G(_)

f(y) :/F O_)eik'. 7 dk" (I -A14)

where the integration is now carried out over the three-dimensional (kl,k2, k 3)

space and the Fourier transform F_) of f(_) is determined by

lOT)- I ff(y)e-i¢.Vdy (l-Ai5)

(2_) 3
Y

Notice that we have reversed the sign convention from that used for the

Fourier transforms with respect to time.

1 .A.3 Aperiodic Stationary Functions

We shall frequently have to deal with functions which are not periodic and

do not possess a Fourier transform. Rather than satisfy the condition (1-All)

(which would ensure the existence of the Fourier transform), these functions,

called stationary functions, merely satisfy the requirement that the average

value 24

24According to this de[inition, periodic functions are ahvays stationary.
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If(t } I2 - lira __1 /r_T /fit) J2 dt
T-oo 2T J-T

(I-AI6)

remain finite.

For such functions the Fourier transform lim F(w,T) where
W-oo

F(co, T) = 2_---1__T T f(t)eiWt dt (I-A17)

will not, in general, exist. However, for any two such functions

f2(t) the cross-power spectral density function

S12(¢o). - = lim ?T
* (¢o,T)F2(w ,T)F I

T

where

fl(t) and

(1 -AI8)

Fj(w,T)- 1 /T T f_(t)e iwt dt for j = 1,2
2_ J

does exist and in fact is equal to the Fourier transform of the cross-

correlation function

fl (t)f2 (t + _) lim 1 T fl(t)f2(t.*__ + 7)dt
T-_ 2T

(I-A19)

Hence,

, Zfl (t)f2 (t + _') = S12(w)e'iW _'d_ (1 -A20)
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The autocorrelation function fl (t)fl(t + 7) satisfies the relation

fl (t)fl(t + "r) = S1 l(W) e-iw T dw (1 -A21)

and the average value Ifl(t)12 satisfies

]fl(t)I2 : Z _Sll(w)dw

where Sll(W) is called the power spectral density function.

and (I-A20) should be compared with equation (I-A13).

*(t + t0)f2(t+ tO + T) = f_(t)f2(t + "r).Equation (I-A19) shows that fl

Hence, the cross correlation of a stationary function is independent of time

translations.

Since the integral (1-A17) exists for finite T, we can use the theory of

Fourier transforms to treat stationary functions by introducing the "shutoff"

function

(1 -A22)

Equations (l-A18)

f(t, T) = _0

It l > T

Lf(t) lt l /- T

Then F(t,T) and f(t,T) are Fourier transform pairs and can be treated by

using the theory of Fourier transforms. At the end of the analysis the power

spectral density function can be calculated by taking the limit as T - _ indi-

cated in equation (l-A18).

This trick of only analyzing f(t) during the interval 2T is related to the

actual measuring process. Thus, the length of time required for the filter to

separate out the components within a band Aw,i2_ is longer the narrower the

bandwidth. However, we cannot afford to wait forever, although the only way

we can obtain a minutely detailed representation of the spectral density is to

average over an infinite time.

The stationary functions encountered in practice are usually random var-

iables. Because of the complexity of these functions the information lost by
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dealin_only with the autocorrelation [unctions andpower spectrtt is usuall)"of
little interest.

These ideascanbe extendedto stationary functionsof a three-dimensional
spatial variable y'. The cross-correlation function of two functions fl(y_ and
f2(_) is definedby

* (y}f2(y. _}) = lim 1 ///f_ (y)f2(y + _)dy<fl z-Z
AV

where AV --oc indicates that the volume element AV grows to fillall space.

It is related to the cross-power spectral density

Sl2(k) = lira (27r)3 FI(k'AV}F2(k'AV) (1-A23)
_V-_ _XV

where

Fj (k, AV) - 1 JJ.]/// fj(y)e-ik" dy"

(27t)3 AV

for j = 1,2 (1-A24)

by the Fourier integral

(f_ (_)f2(y"+ _))- /_/_/ Sl2(k)ei['"_ dl_ (I -A25)

We have again reversed the sign convention in the Fourier transform.
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APPENDIX I .B

CLEBSCH POTENTIAL

In this appendix the Clebsch potentials

Seliger and Whitham _(ref. 7) are developed.

equation

a, A, ¢, and _ introduced by

Let _? be any solution of the

Dr/ _ -0 (1-B1)
D_

where

D _ t +v. V • (I-B2)
D_- _-

is the derivative following a fluid particle. Then it is an immediate conse-

quence of Pfaff's theorem (ref. 8) that at any instant of time _- there exist

functions _y', _'), a(_, _'), and 3(_, 7) such that

(v'- SV_?) • dy'=d(p+ adfl (I-B3)

or equivalently

= Vm+ SVU + av3 (l-B4)

We shall now show that the potentials a and j satisfy certain very simple

equations. In order to do this, however, we must first establish an important

of fluid mechanics. Thus, let _0, z) denote the position vector attheorem
P -0

the time v of the fluid particle which passed through the point y at _hc time

7 = 0. Then if the external force per unit mass _,/'p is conservative SO that

_f= -<'q _'!-BS!
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the momentun_ equation (I-I) can be written in Lagrangian variables as

d_%_°'_I- I
2 pdr

Vp - V9

where

v - dyp

d7

is the fluid velocity. Hence,

%._%....
_yO d r2

1 _p _2

But the second law of thermodynamics (ref. 5) shows that

where

OdS = dh -!dp

P

(1 -B6)

h =e+ p

P

'I -B7)

is the specific enthalpy and e is the specific internal energy.

- %Cyp . d 2 _ _(h _- 9.] + O _S

_o _ _o _o

Then

(I-B8)
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Upon introducing Lagrangian variables, equations (1-3)and (l-B1)

become

and

__dS(_-p(_-,_-_, _ _-0
d7

d7

Then equation (1-BS) can be written as

_yO d.r 2 _yO dr Oyi0

But since

+ _ * dr/÷ dr---'a VV

(l-B9)

--v • _yp -v 0 1 a v 2dr

OY OY

where v 0 = v(-y 0,0), integrating equation (l-B9) bv. parts shows that

_. _y-___.o__ ._ _±_(_ __yO _ _yO _yO _yO/__o
(l-B10)
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where

/o th 1'.)X- +_ - dT+uS
2

This result is known asWeber's transformation. We shall use it to determine

the governing equations for ot and 3.

Thus, inserting equation (l-B4) into Weber's transformation shows that

Comparing this with equation (I-B4) shows that functions (¢, c_,and 3 can

always be chosen so that

¢(_0,0__-_'p, _ +×

_(_0, 0) : _(_p, _/

3_ 0 O) = ,/yp, _)

(1-Bll)

But since yp
follows that

and _- are arbitrary points on the path of the fluid particle, it

Dc_
- 0 (1-B12)

D'r

DA _ 0
D7

(I-BI3)

In order to obtain another relation connecting these potentials, notice that

the vector identity
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v 2 -
F-vF=v__-v×(V×v)

2

can be used to write equation (1-1) as

v 2 -1_v+ V---_x(Vx_') + V_ =--Vp

0r 2 p

(l-B14]

Then inserting equation (l-B4) into this relation shows that

lvp = -V(3-¢+S 0r_ + _ _____+ fl + 9\v____/+vsDr/ _ Vrl D_SS+ V_ D.____ v_qD--_

p \0,T 0T 0T 2/ DT Dr DT Dr

Hence, it follows from equations (1-3), (l-B1), (1-B6), 1-B12), and (1-B13]

that •

v( H+0r4+S_'r o rOr]+ c_ OT_r)= O

where

H =-h+ lv2+__
2

(1 -B15]

is the stagnation enthalpy. We can therefore suppose without loss of gen-

erality (since adding a function of time to _p does not change v') that

H = - PeP- S _/ - _ _;--_ (l-B16)
_r _r _r

In order to obtain an equation for the potential ¢p, notice that taking the

dot product of equation (l-B4) with v and subtracting the result from equa-

tion (l-B15) show that

H -v 2 - D_--S D_ - ot Di----3
Dr D7 D7
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Hence. it follows from equations (l-B1) and {1-B13) that

D_-v2 +OS -H

D-r

Finally, taking the dot product of equation (l-B14) with respect to v

shows that

/9\

D_p_(v_ ,-,_ 1Dp 1 8p _t2

D7-\2 pD_- p _- 27

Hence, it follows from equaLions (1-3), (l-B6). (l-D12),

D, e_ 1 p+
D7 p 8"r _,_-

where we have put

and Ka, K,

and (l-B15) that

(l-B17)

._H -K -SK - a_K3

and K_ are constants.

(l-B18)
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COMMONLY USED SYMBOLS

B

C t

c

c 0

eij

F

f

f

f
G

G o

G

I

T

T

I

.i

k

ff

M

number of propeller or fan blades

convective amplificationfactor, 1 - M cos

chord length; localspeed of sound

speed of sound at steady background state

viscous stress tensor

totalforce exerted by solid boundaries

frequency; or l f" I

force per unit area exerted by solid boundaries on fluid

force per unit volume of fluid

fundamental solution of wave equation

free- space Green's function

fundamental solution of Fourier transformed wave equation

Fourier transform of

magnitude of I

intensity vector

time-averaged intensity vector

unit vector in x 1- or Yl-direction

unit vector in x2- or Y2-direction

wave number

wave number vector

unit vector in x 3- or Y3- direction

Math number, U/'c 0
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P

PO

R

r

r

S

S(r)

T

Tij

T
P

T:.
1]

t

U,U_

V

res

5"

F

5 (x)

unit normal vector to solid surface (drawn outward from surface into

fluid)

acoustic power

pressure

pressure of steady background flow; or constant reference pressure

vector between observation point and center of moving source point

or region

_" - _" vector between observation point and source point

entropy; Sears' function; fixed surface

moving surface

large time interval (eventually put equal to infinity)

Lighthill's stress tensor

period, f- 1

Lighthill's stress based on relative velocity _"

time associated with the arrival of sound wave at observation point

mean flow velocity

number of stator vanes

surface velocity

complete fluid velocity

velocity of fluid in moving frame, v_ = v i - 61iU

coordinates associated with observation point

coordinates associated with source point

normalized pressure autocorrelation function, p(t)p(t * r)/PoCo;

Fourier transform of y

source term

Dirac delta function

99



0 Kronecker delta _1if i - j; Oif i = }?l]
moving coordinatesattachedto source

temperatureEt

polar coordinate (polar angle) or direction between line connecting

source and observation points and direction of motion of source

K eigenvalue
m,n

,k wavelength

u(_) volume of fluid exterior to solid surfaces

p density

PO density of steady background flow; or constant reference density

p' fluctuating density, p - P0

reduced frequency; interblade phase angle in chapter 5

r time associated with emission of sound wave

phase or velocity potential

¢z polar coordinate (azimuthal angle)

angular velocity

f_ !_ , or w(1- M e cos _)

4, angular frequency, 2_f

Subscripts"

D drag component

T thrust component

0 constant reference value; or value of quantity in steady background

flow

Experimental data are presented as pressure or power levels in decibels,

riB. This means that the ordinate of the plot is either 20 lOgl0_/Pr), where

is some reference pressure (usually 2>,10 -4 dynes/cm), or 10 lOgl0

13 W',. The un_ of

PF

"<) "r"' where 7;r is some reference power (usually 10

frequency is the hertz (1 Hz = 1 cycle sec].
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CHAPTER2

AerodynamicSound

2.1 INTRODUCTION

In an unsteady flow, pressure fluctuations must occur in order to balance

the fluctuations in momentum. But since all real fluids possess elasticity

(i. e., they are compressible), the pressure fluctuations can be communicated

to the surrounding fluid and propagate outward from the flow. It is these

pressure waves in the surrounding fluid which we recognize as sound.

At fairly low Mach numbers the pressure fluctuations in the vicinity of the

flow are substantially uninfluenced by compressibility and can be determined

from the velocity field by solving a Poisson's equation 1

V2p = ¥

in which the source term y is a known function of the flow velocity. However,

the Biot-Savat law shows that we can consider the velocity field to be in turn

driven by a prescribed vorticity field. And since Kelvin's theorem of conser-

vation of circulation shows that the vorticity in an inviscid fluid is simply car-

ried along with the flow, an initia!ly localized region of vorticity will remain

that way for sometime to come. Thus, many flows can be envisioned as rel-

atively localized regions of vorticity which drive not only the pressure fluctua-

tions in their immediate vicinity but also those which occur at large distances.

The pressure fluctuations at large distances are weak and satisfy the

acoustic wave equation. Thus, in this region, which we shall often call the

1These pressure fluctuations are sometimes called pseudosouncl.
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acoustic field, the effects of compressibility and the finite propagation s_)eed
2

of acoustic waves are important.

Although the localized pressure fluctuations have been extensively studied,

the theory of aerodynamic sound is principally concerned with the study of the
3

pressure fluctuations in the acoustic field. This subject probably began with

Gutin's theory (ref. 1) of the noise produced by the rotating pressure field of

propellers, developed in 1937. However, it was not until 1952, when Lighthill

(refs. 2 and 3) introduced his acoustic analogy to deal with the problem of jet

noise, that a general theory began to emerge. Lighthill's ideas were extended

by Curie (ref. 4), Powell (ref. 5), and Ffowcs Williams and Hall (ref. 6) to

include the effects of solid boundaries. These extensions include the theory

developed by Gutin and, in fact, provide a complete theory of aerodynamically

generated sound which can be used to predict blading noise as well as jet

noise.

The fundamental equation which forms the basis of the acoustic analogy

approach is derived in the next section. The methods of classical acoustics

given in chapter 1 are then used to obtain solutions to this equation for the

case where no solid boundaries are present. (The treatment of solid bound-

aries is deferred to chapters 3 and 4. ) These solutions are applied to high-

speed subsonic jets, and fairly detailed results are obtained. Supersonic and

low-speed subsonic jets are treated in a somewhat more qualitative fashion.

In Lighthill's acoustic analogy, certain terms associated with the propa-

gation of sound are treated as source terms. In practice, this places certain

limitations on the accuracy of the theory. Alternative approaches developed

to overcome these limitations are presented in chapter 6.

2If the Mach number is sufficiently low, there will be an intermediate region where
the pressure fluctuations have some of the properties of both the localized pressure

fluctuations and those in the sound field. Thus, in this intermediate region the pres-
sure fluctuations are as weak as in the sound field, but the distances involved are small

enough so that the effects of finite propagation spcecL and hence of eonlpressibili_:_, can
be neglected.

3The difference in character between the pressure fluctuations in the acoustic field

and those in the vicinity of the flow is evidenced by their relation to the flow velocity.
Thus, the localized pressure fluctuations are of the order pu '2, where u, is a _ha_--

acteristic velocity. But it was shown in chapter 1 that the pressure fluctuations in the

sotmd field are of the order PCoU'.
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2.2 LIGHTHILL'S ACOUSTIC ANALOGY

In this section we develop the acoustic analogy approach introduced by

Lighthill in two classical papers published in 1952 and 1954 (refs. 2 and 3).

This approach was initially evolved to calculate acoustic radiation from rela-

tively small regions of turbulent flow embedded in an infinite homogeneous

fluid in which the speed of sound c 0 and the density P0 are constants.

In this case the density fluctuations, P' -- P - P0' at large distances from

the turbulent region ought to behave like acoustic waves and hence satisfy the

homogeneous wave equation 4

Lighthill arranged the exact equations of continuity and momentum in such a

way that they reduce to this equation outside the region of flow.

2.2.1 Derivation of Lighthill's Equation

In order to derive Lighthill's result, notice that upon using the summation

convention the continuity and momentum equations can be written as

8p+ 8 =0
-- pvj

8'r _yj

-_-r + vj--v = - _ +
8yj _Yi _Yj

where eij is the (i,j)th component of the viscous stress tensor. For a

Stokesian gas it can be expressed in terms of the velocity gradients by

;'_-,. L)

4The notation intt'oduced at the beginning of section 1. 2 will be u_ed in thi.s sec-
tion.
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= _.}vi+ _vj _ 2 _Vk_

eij \_y--_. ay---_t 3 5ij ayk]

where /_ is the viscosity of the fluid.

Multiplying the continuity equation (2-1) by vi, adding the result to the

momentum equation, and combining terms show that

(2-2)

a
-- pv i = - _ (Pviv j + 5ijP - eij)

ayj

adding and subtracting the term 5 c__ ap/aYi, this equation can beBut after

written as

where

apv i aTij
%-7-+c°2

ay i ayj

Tij =Pvivj + 5ijI(P-P0 )- c2(p - P0 )] - eij

(2-3)

(2 -4)

is Lighthill's turbulence stress tensor. Finally, differentiating equation (2-l)

with respect to % taking the divergence of equation (2-3), and then subtract-

ing the results yield Lighthill's equation

(2-5)

2.2.2 Interpretation of Lighthill's Equation

Equation (2-5)clearly has the same form as the wave equation governing

5The subscript 0 is used here to denote constant reference values, winch w_iil

usually be taken to be the corresponding properties at large dist.ances from the flow.
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the propagation of sound emitted by a quadrupole source 6 _2Tij/Pv i. ;v.] in a

nonmoving medium (see section 1.5.2). It therefore shows that there is an

exact analogy between the density fluctuations in any real flow in arbitrary

motion and those in an ideal acoustic medium at rest (with sound speed c0}

due to a distribution of quadrupoles of strength Tij.
The crucial step in Lighthill's analysis is to regard this source term as

known a priori. (Notice that the nonlinear terms are all contained in the

source term). However, we never have complete prior "knowledge of this term

since it involves the fluctuating density, which is precisely the variable for

which equation (2-5) is to be solved. In fact, since Lighthill's equation is an

exact consequence of the laws of conservation of mass and momentum, it must

be satisfied by all real flows: most of which are certainly not sound like.

Thus, in most cases, a knowledge of Tij is equivalent to solving the complete
nonlinear equations governing the flow problem, _,hich is virtually impossible

for most flows of interest.

Even for those flows which are sound like, the source term

(_2Tij/_y i _yi),, aside from representing the sound emission, includes such

real fluid effects as the convection and refraction of the sound by the mean

flow, the scattering of the sound by turbulence and entropy spottiness, the

back reaction of the sound field on the flow itseK, and the viscous dissipation

of the sound by the flow. The prediction of any of these effects requires that

the sound field (which is not known until eq. (2-5) is already solved) be in-

eluded in the source term.

In spite of these drawbacks the acoustic analogy approach serves as a

foundation for most aerodynamic sound analyses. This is probably due to the

fact that this approach allows us to use the powerful methods of classical

acoustics to treat aerodynamic sound problems. In chapter 6 we discuss pro-

cedures which have been developed to alleviate the difficulties associated with

this approach.

By incorporating suitable boundary conditions, we can apply L:g!,_Liil's

acoustic analogy to flow in the presence of solid boundaries. As a first step,

6It is shown in the nex_ .section that this source term should vat_iyh J'_t.,;,k, t}:c

region of turbulent rio'*" and hence (as indicated in the beginning of this section) eq.

(2-5) does indeed reduce to a homogeneous wave equation in z_s ..... i n
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however, we shallconslder the case wilere the effect of solid boundaries on

the sound field is negligible. Then the only important applications of the re-

sults will be to jet noise. (In fact, Lighthill actually developed his theory

specifically to deal with this problem. ) In chapter 3 we show how solid bound-

aries can be included in the analysis and apply the theory to a number of spe-

cial cases.

2.2.3 Approximation of Lighthill's Stress Tensor

Lighthill's equation can only serve as the starting point for the solution of

aerodynamic sound problems if it is possible to regard its right side as a

known source term. We shall now show that there are at least some flows for

which this is a reasonable assumption.

To this end, consider a subsonic turbulent airflow (or for that matter any

unsteady high-Reynolds-number subsonic flow) of relatively small spatial ex-

tent (such as the flow in a jet) embedded in a uniform stationary atmosphere.

The subscript 0 will now be used to denote the constant values of the thermo-

dynamic properties in this atmosphere. Within the flow we anticipate that the

viscous stress eij , which appears in Tij , will always be negligible compared

with the far larger Reynolds stress term Pviv j. In fact, it is well known from
the study of turbulence that the ratio of these terms is of the order of magni-

tude of the Reynolds number pULls., which in virtually all applications ef

aerodynamic noise theory is quite large.

In the region outside the flow (or at least at sufficiently large distances

from this flow) the acoustic approximation should apply, and hence the veloc-

ity v i should be small. Then the quadratic Reynolds stress term Pviv j will

be negligible. In addition, the effects of viscosity and heat conduction can be

expected to act in this region in the same way as they do for any sound field.

This means (as shown by Kirchoff, see ref. 8) that they only cause a slow

_; .... ie:_damping due to the conversion of acoustic euergy into heat ,_nd have _ :__ .....

cant effect only over very large distances. Thus, it should be possible to ne-

glect eij entirely.

Now assuming that the flow emanates from a region of uniform tempera-

ture, the effects of heat conduction ought to be of the same order of m_'_ni_.u_te

as the viscous effects (provided the Prandtl number is of order 1 as it _,s for
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most fluids). Hence, heat conduction should also be negligible within the flow.

Then the entropy changes will be governed by the inviscid energy equa-

tion (1-3). And, since it is assumed that the flow emanates from a region of

uniform temperature, this equation shows that the entropy should be relatively

constant. But it is shown in section 1.2 that

P - Po = Co2(p - %) (2-6)

in any isentropic flow in which (as is usuaily the case in subsonic flows)

(p - p0)/P0 and (p - ,o0)/p 0 are sufficiently small.

We have therefore shown that Tij is approximately equal to PViV j inside

the flow and approximately equal to zero outside this region. Hence, upon

assuming that the density fluctuations are negligible within the flow, we can

approximate Lighthill's stress tensor by 7

Tij _ P0vivj (2-7)

But within the flow it is reasonable to suppose that the Reynolds stress P0ViVj

can be determined, say from measurements or estimates of the turbulence,

without any prior knowledge of the sound field. Then the right side of Light-

hill's equation (2-5) can indeed be treated as a source term.

2.3 SOLUTION TO LIGHTHILL'S EQUATION WHEN NO SOLID

BOUNDARIES ARE PRESENT

It is shown in section 2.2 that the problem of predicting the sound emis-

sion from a region of unsteady flow embedded in a uniform atmosphere can be

reduced to the classical problem of predicting the sound field from a known

quadrupole source of limited spatial extent. If any solid boundaries which

may be present do not influence the sound field to any appreciable extent, the

solution to this problem can be expressed in terms of the free-space Green's

function. Indeed after comparing equation (2-5) with equation (1-59), we see

7Of course, it is being assumed that no combustion occurs in the flow. Tiffs could
cesult in large fluctuations in entropy and hence in (p - p0 ) - c 2 (p - ,%_). This term

would then have to be included in Tij.
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from equation (1-82) that this solution is given by 8

4_c 2 r [ayq byj _=t-(r/c0)

where

In order to transform this equation into a more suitable form, it is convenient

to introduce the differential operator 5/5y i, which denotes partial differentia-

tion with respect to Yi with not only t but also r held fixed to obtain

1 / 52 Tij(Y" ,t - r/c 0 ) dy" (2-9)
p(_', t) - P0 = 47rc_ 6Yi6yj r

Then since the operator 8/ay i denotes partial differentiation with respect to

Yi with x" and t held fixed and a/ax i denotes partial differentiation with

respect to x i with _" and t held fixed, the chain rule for partial differenti-

ation shows that for any function F(_, r', t)

5F 8F 8F

6Yi _Yi ?xi

and hence that

8As indicatedin chapter I, the omission ofthe limitson a volume integral,ienotes

an inteKrationover all space.
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6Yi6Yj cYi byj cYi _xj _yj _x i _x i _xj

Using this result in equation (2-9) shows that

;.E =0£', 'i;:._>"........J .)tU!_, ,J

P(K,t)-Po-12S 02 'I_3_]d_'+ 1 ? f ;:-_--I_]d_
4_rc OYi OYj 4uc 2 _xj <=Yt

4.c02°xi % 4.cgox;EdLV] <2-,o/

provided the integrals exist. In this equation the notation ETijir_ is used to

denote Tij(Y" , t - r/c0)/r. Notice that the integrand in eacl_ of the first three

integrals is the divergence ofavector. But if S R denotesa spt_ere of radius

R, the divergence theorem shows that

iv. Xdy: lie S
R- °o 'JR

for any vector A for which the integrals exist. Hence, upon assumin<,_. 9 that
-1

Tij is smooth and decays faster than y for large y, we can conclude that

9We show in section 2. 2 that outside a localized region of turbulent l]otv xthc re the.

viscotts and heat cone t etion cifects arc negiig-iblc T.. bellaves Li <c pv _. [3tit i,t ti_i ._
• ' 11 1 I"

outer region,, v i x_ll not decay any slower than the rate y-1 at which the acoustic.

particle velocity decays (eels. (1-9:1) and (1-94)). ttence, TiI must decay :it lc:lst :is
-- 9

fast as v -. But we cannot be sure that the last integral in eq. (:2-10) will c<mvc, l-gc

unlc, s._ Tii is known to decay faster lh:tll v-- t|c)\','t!\c,l', kilt, illt,,,_ll,l•, .- i,t. it ....'

velocities, which donzinate (at Sl.lfficicntlv h)w M:tch nl.lllll)ot's) ill tilt.' i'c'%iorl el :t h_c',/l-

ized flow, decay as y-3 for large values of y Thus, if we could begin by c(_mlllc,tc, l\

ncgleetingthe eontributionof the acoustic velocities, Tij would deed\ as y-l; an<l the
last integral in eq. (2-10) would certainly converge. By using the method of matched
4syml)totie expansion, it can be shown (ref. 9) that this app roxi mati,m i> v:: 17 :., l,c'n-
c,ve r the wavelenR-th of the sound is large eOml)ai'ed with the si zc or the ._ou l,cc rc,4i,m.
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these integrals vanish and that equation (2-10) becomes

1 _2 fTij@,t-rld_'- (2-11)
p(_', t) - P0 - 4rrc 2 ax iax] r c0/

In aerodynamic sound problems we are usually interested in the sound

at large distances from the source where, as we have seen, the expression

for the sound field becomes particularly simple. Thus, first consider the

case where the observation point g is many wavelengths away from any point

in the source region. (This distance need not be large relative to the dimen-

sions of the source region. ) Then upon using the manipulations described in

section 1.5.2 the second partial derivative of the integrand in equation (2-11)

becomes

a2 Tij(_" ,t - r/c 0 )_ rir j a2Tij(Y ",t - r/c 0 ) +O(r-2)

ax i axj r c2r 3 at 2

where

T=_- g

Hence, for large r,

11 _-, t - r----ldy"

p(_, t) - P0 4_rc2 r3c2 ct 2 Co /

If the distance between any source point and the observation point is also large

compared with the dimensions of the source region (i. e., if the observation

point is in the radiation field), we can (upon assuming that the origin of the

coordinate system is in the source region) replace rirj/r 3 by xixj/x3 to ob-

tai n
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.... t

t/- po 4"c°2 x3 Co2 2 Co/

provided the integral converges. I0 This equation allows us to calculate the

density fluctuations in the radiation field once the source term is known.

2.4 APPLICATION OF LIGHTHILL'S THEORY TO TURBULENT FLOWS

2.q. 1 Derivation of Basic Equations

The most important application of the solution (2-12) is the prediction of

sound from turbulent jets. 11 But for turbulent flows it is reasonable to as-

sume that the stress tensor Tij is a stationary random function of time.

Then equation (2-12) shows that the density fluctuation in the radiation field

must also be a function of this type. For such sound fields (see section

I.7.3.2. I)both the average intensity and its slaectrum can readily be deter-

mined from the normalized pressure autocorrelation function

F(x', "r) = [p(_', t + ;)- p0][p(_, t)- PO]

PoCo

And since equation (2-6) must certainly hold in the radiation field, it follows

from equation (2-12) that this function is related to the source term by

ff
_) _ 1 xixjxkx_ _ __F(_,

16_2c_p 0 x6 JJ
_,2Tk/

a2Tij (y", t') -- (y"', t")d_' d_"

_t 2 _t 2

(2-13)

10The convergence of this integral now requires that Ti) dccny ra_=ter+han ,-:;
ior large y.

llIt can also be used to predict the sound from periodic jets. See section '2. 5. 3.
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where

t,, = t + r _ JK- _"'1

c o

(2-14)

It is shown in the appendix that the integrand in equation (2-13) can be put

in the form

a2Tk/ a 4
a2Wij (y", t') -- (y"', t") = _ Tij(_, t')Tk2 (_', t")

at 2 at 2 _.4

(2-15)

But since (as shown in appendix 1. A. 3) the cross correlation of a stationary

function is independent of time translations, it follows from equation (2-14)

that

Tij(_,,t,)Tk/(_-,,,t,,)= Tij(_,t)Tk/(_,,t+r + 1_-Y"I- [_'-_"1)(2-16)
c 0

And since Ix"- Y"I behaves like

I_- 7,1-_x--_. p ÷o(_-I)
X

for large

Finally,

x it follows that

inserting equations

- !7- ?,t _ (P'- _)

c o x c O

(2-17)

2-15) to (2 i7)into _quatien (9_,_' '- . _ Lo) _;I_),,VS 'h_[
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r/£", T) -
1 xixj XkX/

16_2c_P0 x 6

AE_OOY:4_._:Cso_r,:

_4 // T -' t)T _" - c@' (2 18)ij (y ' kl'- ' ro)dY'
Or 4

where

TO _ t + r + "_ • (P' - P)
xc 0

It is now convenient to introduce the separation vector ti _ Y" - _:' as a

new variable of integration in equation (2-18) and to define a two-point time-

delayed fourth-order correlation tensor by

Tij(_' , t)Ttd (p', t +- r) - C)ijki (p,
_ijkt(_' , _, r) - 2 ' (2-19)

P0

where dijkt is an arbitrary time-independent tensor whicb will eventually be
chosen to simplify the equations. Then, since theJacobian of the tra,_sfolun

y',y" - y',_? is unity, inserting these quantities into equation (2-19) shows

that

-4 .-r, _,r +i . dy' d_ tr(x', r) - PoXiXjXkXg u _ijk/ ' (2-20)
2 5 6 _r4 c 0

16n CoX c

This equation relates the pressure autocorrelation in the sound fiuid :o th._,

source correlation tensor 4tijk/. Taking its Fourier transform and usina

equation (1-125) and table 1-1 in appendix 1. A show that the intensity spec-

trum in the racliation field is given by

4 f_f[eiC_ ' - ,Co_ % x xixkxz ]
I a°(_)- _, 3 a .6 .Ill

_,'.;7 C 0 .'* _ _.._,.,, ,,i

_ijkg(y', n. "7) dy' ci,i d.
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This equation can, in principle, be used to calculate the spectrum of the sound

field emitted from a turbulent flow whenever solid bouudaries do not play a

direct role in the process. However, most turbulent flows which are not in

the mm_ediate vicinity of solid boundaries (e.g., jets, wakes, etc.) have

nearly parallel mean flows. In the next section we deduce certain properties

of the correlation tensor "which will be helpful in understanding the sound

fields produced by such flows.

2.4.2 Parallel or Nearly Parallel Mean Flows

Whenever the mean flow is nearly parallel, it is of interest to consider

the case where the velocity _'(_', t) is the sum of a parallel mean flow iU(Y2)

as shown in figure 2-1 and a fluctuating part _(_', t) with zero mean so that 12

Q

v i = 51i U + u I (2-22)

2.4.2. 1 Special form of Reynolds stress approximation to correlation

tenso_______r.- Before turning to more general considerations, we shall attempt to

Y2

Figure 2-I - Unidirectional transversely sheared
mean flc_,.

*-This t}qoe o[ model tot" the turbulence cv)rrclation _ensor app,.'a:s _:o h:v.c b,,,..:

introduced by Ribncr (refs. 10 :In(/ 11).
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gain some insight into the connection between the turbulence velocity correla-

tions and the correlation tensor _ijkl by approximating Tij by the Reynolds

stress. Thus, substituting equation (2-22) into the Reynolds stress approxi-

mation (2-7) and choosing (?ijk/ in equation (2-19) to be

Ut_11 _ UTU IU'251i61j kUt + U"251kSll i j + U'2U"251iSljSlk61/ +u!u:t j u"u_'k

show, after carrying out a very tedious calculation, that 12

:_ij k/(y-'' _?-r)/
= /U_It]_U _ -- U_U _ U_ _ _ 11_U_11_ U_U _

i j_'k / i j k_gj+4U'51i"j k_'l + 4U'U"51iSlk j /

(2-23)

where the double primes indicate that the quantities are to be evaluated at _"'

and t + r, while the primed quantities are to be evaluated at _' and t. The

notation /= indicates that the quantities on both sides of the equal signs are

not necessarily equal but merely make equal contributions to equations (2-20)

and (2-21). In order to obtain this relation, we changed the names of dummy

indices in the summations and used the equation

U*;_ UrUr VU_t Y llv_£ UtUTUTV

vii j k lJ = "_ '_lk i j l

obtained by changing the variables of integration from y', _ to -_" and _' + _"

and then using the invariance of the turbulence correlations under time trans-
13

lations.

2.4.2.2 Introduction of moving coordinates. - Let l denote a typical

correlation length of the turbulence. Then l is roughly the smallest length

for which

_ijk/(_'' _,r )

 ijkZ o,r)
0 whenever I;I > z

13The calculations are earFied out in more detail in ref. 12.
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.6_
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-.2

• ',R "0

2

-50 0 50 100 150 200 250

Time delay, r, l,lsec

Figure 2-2. - Isocorrelation contours in moving frame (measurements in mixing region 11diameters down-
stream), (From ref. B.)

If _ijk/ changed so slowly with time that it was practically constant for time

changes of the order of I/c O (the change in retarded time across a turbulent

eddy) or, what is the same thing, if TT? (the characteristic decay time of a
turbulent eddy) satisfied the inequality

r >> l (2-24)

7? Co

it would be possible to replace _ijk_-_' _, _- + _. _'/xc0) by :_ijkl (_'' _' r),

since (_/c0) • x/x = O(l/c0) in the region where the integrand in equa-

tion (2-20) is of significant magnitude. Indeed, tf it were not for the mean

flow, a plot of constant correlation contours might appear as shown in fig-

ure 2-2 and the inequality (2-24) would then be satisfied. However, [or ,n_,-

ing eddies, especially at higher velocities, the turbulent fluctuations (seen by

a fixed observer) will appear to be much more rapid because of the convec-

tion of the random spatial pattern of the turbulence by the mean flow. This

rapid convection of the eddy pattern thereforo causes the turbulence fluctua-

tions with time seen by an observer rowing with the mean flow to be much
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E

-50

/

l
0 54] | 100 150 200 250

T.q

Time delay, T, usec
1

Figure 2-3. - Isocorrelation contours for fixed observer (measurements in center of mixing region 1,_diameters downstream).
(From ref. 13. )

slower than those seen by a fixed observer. Hence, the eddy pattern appea_-s

to be nearly frozen. 14 As a result the constant correlation contours in an ac-

tual flow will resemble those shown in figure 2-3. In fact, this figure is a

plot of actual measurements of the second-order time-delayed correlation

Ul(_, t)ul(_' + {'771,t + r) carried out in the mixing region of a jet by Davies,

Fisher, and Barratt (ref. 13). The inequality (2-24) will therefore not gen-

erally be satisfied in most real flows. But in any coordinate system which,

roughly speaking, "moves with the eddies" the constant correLation c_ntouz's

should again resemble those shown in figure 2-2. (In fact this figure was ob-

tained from fig. 2-3 by introducing just such a coordinate system. )

Thus, suppose that the correlation tensor _ijk/(_ ,_-)is expressed in
terms of the variables T and

14This result is frequently referred to as Taylor's h_pothesis.
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4 = q - ic0Mc 7 (2-25)

where i is a unit vector in the mean flow direction (i. e., Yl-direction) and

c0M c is the slope of the dashed line in figure 2-3. Then 41 will remain

constant along any line having this slope. Hence, a change in 41 with _-

held fixed corresponds to a movement in the direction perpendicular to these

lines. The constant correlation contours in the 41 - _- plane must therefore

resemble those shown in figure 2-2. And, as a consequence, the decay time

_-_ of the "moving-axis correlation tensor" Rijk/ defined by

Rijld (Y', _, v) = _ijk/(Y', 7, _')
(2-26)

is more likely to satisfy the inequality

v_ >> l (2-27)
c O

than is the fixed-frame decay time _'77"
Substituting equation (2-26) together with the change of variable (2-25)

into equation (2-21) shows that

w4p0 _xixjxkxl fff/ _Iexp iw - M c __. Z__]I 1J]]l I' x
where

x 1
COS 0 = --

X

is the angle between the direction of mean flow and the line between the ob-

servation and source points shown in figure 2-4. The essential simplicity of

this equation becomes especially apparent when the four-dimensional power

spectral density tensor
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Mc

Figure 2-4. - Orientation of observation _oint relative
to flow direction.

Hijk/(Y'-"k_°)='' (2_)41 Aco/ei('_T-k" _')Rijk_(y" - r)d_dr,_,

is introduced to obtain

- - "0 • j ,, _ _',, co < co(I_M c cos O)dy"

Ic°(x) - 2c05 x 6 Hijk/ c o x

(2-29)

Instead of carrying out a similar operation on equation (2-20) for the pressure

autocorrelation function, it is simpler to take the inverse transform of equa-

tion (2-28) to obtain

,o , < % 1
1 ........ | <_ dr'

F(x"t)- 16 2c05 ,6 y\l-M c ,.¢,s u_l ' T 1 - Mc ..... / "
/

('.4 " i]
16n2c 5 x 6 J (l - Me cos O>5k0, J L x Co(1 - Me cos e .Ir=t_(1.Mc

m; dy'

(2-30)
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Aside from the possible advantage of being able to neglect the retarded time,

this equation possesses the additional advantage over equation (2-20) of being

less sensitive to small errors in the correlation function. In order to see this,

notice that the largest changes of the correlation function with respect to time

occur as a result of the convection of the frozen eddy pattern by the mean flow.

Hence, the largest part of the time derivatives of _tijk/ and therefore of the

integrand in equation (2-20) will be due to the convection. But the uniform

subsonic convection of a frozen eddy pattern cannot contribute to the sound

field. Hence, only a small part of the integrand does not integrate to zero.

This difficulty does not occur with equation (2-30) since the changes with re-

spect to time now o:cur on the time scale of the sound-producing turbulence

fluctuations. The integrand in this equation should therefore be much tess

sensitive to small errors made either in the measurement Or in the analytical

approximation of the turbulence correlation. This is extremely important

since this quantity is quite difficult to determine accurately.

As pointed out by Ffowcs Williams (ref. 14), equation (2-29) shows in a

particularly explicit way which components of the turbulence generate the

sound field. Thus, it shows that for turbulence measured in the moving frame

the wave number vector of the sound field (_/x)(w/c O) is the same as that of

the turbulence which generates it. However, the frequency of the turbulence

Line of sound-producing elements

Slope = -Co(1 - Mc cos 8H

Constant -_owe r
conlours

_--KI

Figure 2 5 Moving-frame turbulence power soectral densitv funct on
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is eq_14[ t,:_ the Dtq)[_ur tact_,r (1 - M _'_s ) _im, es the frequency of the gerund
L' •

it generates. A plot ,ff 'a typical mo\'in_-trame turbulence power spectral

density function _ref. 14) in w4ve number - frequency space is shown in fig-

ure 2-5. It reflects _he fact that in [he moving frame the turbulent energy is

concentrated arc_und the tow frequencies. But equation (2-29) implies ttmt all

the sound-eluittiilg elements tlll.lst lie along the line shown in the figure•

Hence. lhe part of the lurbulence spectrunl containing the maximum energy is

by no means ;thv4ys the part which enlits the most sound. At subsonic con-

vection speeds these parts coincide more closely for forward emission

( i_ i 7,, 2) and high Mach lmmbers than they do for backavard emission and

low Math numbers. Accordingly, more sound is emitted in the forward direc-

tion than in tt_e backward direction; and the higher the Mach number, the

greater the forwarcl emission.

2.4.2.3 Neglect of retarded time in subsonic flows. - Equations (2-29)

and (2-30) have been put into a form where omission of the retarded-time

variation introduces the smallest error. Inspection of equation (2-30) shows

that this term can be neglected whenever the decay time r_ of the moving-

axis correlation is so long that

l << __
c0(1 - M e cos O)

(2-31)

Thus, when the inequality (2-31) is satisfied,

mated by

equation (2-30) can be approxi-

F(x, t) - 16_2c 5 x6 (1 - M c cos _)5 RiJk/(_'' _' r) d_" cl7'
r=t/(1-M c cos u)

(2-32)

and hence its Fourier transform (eq. (2-29)) c,'m be approximated by
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=_'4iJ 0 xixjxkx ! y"I,(_) = HijkZ[p 0,_:(l - M cos'_)]dp (2-33)

2c_ x6 ' c •

It is important to notice that equation (2-33) does not imply that the sound is

emitted by the zero-wave-number components of the turbulence. In fact,

these conlponents radiate no sound at all. The equation simplyinlplies that

the energy in the turbulence at the small wave number (o.,/c0)(_,'x) at which the

sound is emitted is approximately the same as the energy in the turbulence at

k'-= 0. The quantity l/c0(1 - M c cos _) which appears in the inequality (2-31)

can be interl)reted as the tinle it takes a sound wave to cross a moving eddy at

an angle _. Thus, if the eddy is small enough so that this time is much less

than the eddy decay time, the retarded time can be neglected. Notice that, as

the convection Mach number of the eddy increases, the error created by ne-

glecting the retarded tinle gets worse. Hence, this approximation is essen-

tially limited to subsonic (or perhaps very high-Mach-number supersonic)

flows.

2.S PHYSICS OF JET NOISE

In this section the equations derived in section 2.4 will be used in con-

junction with experimental observations of jet flow fields to explain and pre-

dict various types of jet noise.

2.5.1 High-Reynolds-Number Subsonic Cold-Air Jets

The sound emission from subsonic cold (i.e., unheated) air jets has been

more extensively studied than any other type of jet noise. We shall show sub-

sequently (near the end of section 2.5. 1.2) that the inequality (2-31) is reason-

ably well satisfied in the sound-producing region of such jets so that equa-

tion (2-32) can be used to predict the noise. However, this cannot be done

unless the turbulence correlation tensor Rijkl is known. Since our knowledge

of this tensor is quite limited, we shall try to model it in some approxmmte

fast, ion. This will be accomplishedbv making a series of pr,_gressiveiy rpore

restrictive assumptions. Each of these assuml)tions willallow us to obtain a

124



AERODYh_AhIZCq.OL;_ID

formula for the sound field that requires less information about the turbulence

than the preceding one.

2.5. I. 1 Approximations to source term for subsonic jet flows. - The

parallel mean flow approximation (2-22) and the Reynolds stress approxima-

tion (2-7) should be adequate to describe the flow in a jet and are therefore

adopted in this section. Then equations (2-23) and (2-26) show that the

moving-axis turbulence correlation tensor is the sum of three terms. How-

ever, it is shown in reference 12 that, if the turbulence is assumed to be lo-

cally homogeneous and incompressible, the middle term integrates to zero

and only the first and last terms contribute to equation (2-32). It is now con-

venient to change the variable of integration in equation (2-32) from y-' to y,

where

_= IYl, Y2 + y_' Y3 + Y_']2 ' 2

, , 1 , 1 }= Yl, Y2+2_2 , Y3+2_3

Then in view of equations (2-23) and (2-26), equation (2-32) becomes

PO x.1 j Kix'x--x" i "_ 1
F(_, t) J16_2c0_ x6 C1-M ccose) 5

l-)d_ + 46li61k/U'U ''R°z/_',{,_-/d[]t d_
2"r=t/(1-M c cos O)

(2-3_)

where

Ro_ (_,g_): u,_, - u,_,_,_,,i i u_,u,/ ii "
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are, respectively, the fourth- and second-order time-delayed turbulence ve-

locity correlation tensors.

NOW let I(x'lY-) denote the average intensity, at the point x, of the sound

emitted from a unit volume of turbulence located at the point _, and let

]¢o(_ly-) and F(K ly', t) denote its associated spectra and autocorrelation func-

tion, respectively. Then

and it follows from equation (2-34) that

po
r(x'l_,t)=

16_2c5(1 - M c cos 8)5 x6

x

/" n

#', _)d# + 451i51k JU'U"R_/(_, _, v)d_J}.r=t/(l_Mc _)COS

(2-35)

The first term in this equation is called the self-noise and the second term is

called the shear noise. This terminology was introduced by Lilly (ref. 15) to

indicate that the former represents noise generated by turbulence-turbulence

interactions whereas the latter represents noise generated by turbulence -

mean shear interactions.

In order to predict the variation in the sound field around the jet, it is

necessary to make some assumptions about the relative magnitudes of the

various components of the turbulence correlation tensors. Perhaps the sim-

plest such assumptions are those made by Ribner (refs. 11 and 12). The first

of these is that the joint probability ctistribution of the _'elocities at two points

is approximately normal. It is shown in books on turbulence (e. g., Batche-

lor (ref. 16)) that this assumption implies that the fourth-order correlation

can be expressed as the sum of products

R 0 = R 0 R 0 + R 0 R?k (2-36)ij k/ ik j l it
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of second-order correlations. The other assumption ts that tile turbulence is

isotropic. This means (ref. 16) that the second-order turbulence correlation

tensor is an isotropic tensor and hence that there are functions A(_, T) and

B(_, _-) such that

RijO(_,_.)= A(_, _')_i_j+ B(_, T)Sij

But for incompressible flows the continuity equation implies that A and B

are related by (ref. 16)

4A+ _ 8A+I ___BB=0

Introducing these approximations into equation (2-35) and carrying out a rather

tedious calculation shows that

r(_'I }',t) =
P0

16_2c05(1 - M c cos 8)5x 2

X 40 + COS20 sin20 sin2¢) /U'U"R01 d_'Jtd_ 4(cos+

)_
, =t/(1-M c cos O)

(2-37)

where

x 2

cosec- /-2+
_x 2 x_

is the azimuthal angle shown in figure 2-6. For axisymmetric jets, aver,_ing

over this angle will account for the different orientations of the sound sources

in any given annular slice of jet. Then equation (2-37) becomes
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×I

x3

/
/

,/ \

Flow
direction

×2

Figure 2-6. - Coordinate system for iet flow.

r(_t y. t)av =
PO

16_2c_(1 -M c cos _)5x2

-M c cos 9)

Taking the Fourier transform of this equation and using the relations (between

the intensity, its spectra, and the autocorrelation function) given in section

1.7.3.2. 1 now show that
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:_(:I:):_=
_4p 0

32rr3c05(I- M c cos 9)4 x2

_:,,_u ,,-,':_C SOL!,T_

×
-/ 0 d_"dvR1111 +

COS4_ +2C0S2{94/ei_V/

where

and that

g2 = co(l - M cos :))
C

_- R°:::d:
:(:iDav:6:2c0%:- Mc cos _)_x2\_H :--o

COS _ + cos 2_
+

2

2-39)

where

A --

\_3T4 j .i _

4 £a o )j ::::d:

is the ratio of the maximum shear noise to the self-noise. By assumin,,

specific model for the turbulence correlation functions, Ribner (t'pf-s. 11

and 12) has estimated that A _ 1.

From similarity considerations we expect
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IAI_U,413/7_jK, where u' denotesatypica| root-mean-squareto be of the order

turbulence velocity and K is some dimensionless constant. Hence,

__P0(_'})-4u'4/3-.__ __- (1 c°s4_ + c°s2_)+ (2-40)
T( l'#)av K 16_2c_ (1 _ M C cos 0)5x 2 2

The total power emitted per unit volume of turb,,tence t_(y-') is obtained by

integrating equation (2-40) over the surface of a large sphere of radius x.

Thus, upon neglecting the variation of the term

cos40 + cos20)
÷

2

with angle in comparison with the (usually much larger) variation of

(1 - M c cos 0) -5 and replacing it by its approximate average value of

obtain

3/2, we

2m(_ ) _ 3 Kz)0 J'4/3 1 + 1V1_ (2-41)

08_CoT_

2.5. 1.2 Fluid mechanics of subsonic jets. - The approximations g_.ven m

the preceding section were introduced to simplify the equations and are, for

the most part, not based on any specific information about the flow field in a

jet. In this section, we shall summarize those aspects of the .let flow field

which are relevant to jet noise. The information is based on the measure-

merits of Laurence (ref. 17); Davis, Fisher, andEarratt (ref. i3): and Brad-

shaw, Ferriss, and Johnson (ref. 18).

Consider a high-Reynolds-number air jet issuing from a convergent noz-

zle with a fairly uniform velocity Uj into a stationary fluid, as shown in fig-

ure 2-7. As the jet issues from the nozzle an annular mixin_ reeion forms

between the jet and its surroundings. The flow in "his r,':!,,n bec_,;_.:_:s _uri_u-

lent within about one-half of a jet diameter downstream. It then spreads
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__ Potential core

--0

N°zz9 _tVlixingl region

I
[_ _'dxing region,
E- 40

" Yl

Transition region
4D ___

'Fully developed
region

Figure 2-7. - Jet structure.

Nozzlewall

Jet

'-Pseudolaminar jet ",

Figure 2-8. - Boundary of mixing region.

linearly into both the jet and the surrounding atmosphere until it fills the en-

tire jet at 4, or perhaps 5, diameters downstream. Hence, the thickness of

the mixing region is about 0.2 Yl to about 0.25 Yl" The flow within the

conical region bounded by the turbulent flow remains laminar, and hence this

region is called the potential core: Of course, theboun&_ry of the jet mixing

region is not straight as shown in figure.2-7 but has more the appearance

shown in figure 2-8. Once the mixing region fills the jet its uniform growth

ceases and it evolves differently as it passes first through a transition region

and finally, at about 8 diameters downstream, into a re,on of self-preserving

flow called the fully develo[Jed region. The k_tter region _Iso grows linearly

with Yl but at a different rate than the mixing region. Schlieren photographs
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Nozzle

(a) Jet-exit Mach number, Uj/c O, 0.9.

i_lozzle

132

(b) Jet-exit Mach number, Uj c0, 0.74.

Figure 2-9. - Schtieren photographs ol_flow ina high-velocity subsonic
jet from a 7.6-centimeter(3-in.)diameter nozzle. (Taken by W. L.
Howes at NASA Lewis Research Center.)
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Y2

Jet

Centerline of

mixing region

ocity

Figure 2-I0. - _qxing-region profiles.

of a typical high-velocity subsonic jet are shown in figure 2-9.

The mean velocity profile and the mean square turbulence velocity varia-

tion across the mixing region are shown (roughly to scale) in figure 2-I0. The

turbulent energy is confined to a fairly narrow region about the center of the

mixing region, and the peak turbulence intensity u' at the center of the
max

mixing region remains fairly constant well into the transition region. It is

approximately equal to

u' _ 0. 16 Uj (2-42)max

-i
Within the fully developed region the mean velocity falls off as Yl "

In the mixing region, each turbulent "eddy" is believed to be elongated in

the direction of flow. 15 Thus, the longitudinal correlation length 11 in the

direction of flow is about twice the longitudinal correlation 16 length I 2 in the

radial direction. These correlation lengths both vary linearly with distance

from the nozzle and, in fact,

15There is some recent evidence to indicate that the long axis may actually be at a

45 ° angle to the f[ow direction.

16The longitudinal correlation length in the _t'h-d_reetion is nero dotin ..,_ 'is t!_e

distance for the longitudinal correlation coefficient in that direetiorL Rii(._,;. ki'4 i. 0)/

Rii(\". 0. 0) (no sum on i(i = 1, 2, or 3)), to fall to 1/e. The cluantitc "<i (tem_tcs thu
th

unit vector in the i -direction.
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I I _ 0. I Yl and _2 _ 0.05 Yl (2-43)

In the fully developed region the correlation length is relatively independent of

Yl to about 20 diameters.

A suitable measure of the decay time -r_ is the time taken for the second-

order moving-frame turbulence correlation to fall to 1/e of its T = 0 value.

Davies, Fisher, andBarratt (ref. [3) found that along the centerline of the

mixing region this quantity satisfied the relation

l _ 0.2 UjT_ (2-44)

Hence, for Uj < Co, the inequality (2-31) is fairly well satisfied. And, as a

result, we are fairly well justified in adopting the assumption (see section

2.4.2.2) that the retarded time is negligible.

The eddy convection velocity U c = c0M c has been measured in the mix-

ing region by a number of investigators (refs. 13 and 19 to 21). Measure-

ments taken by Davies, Fisher, and Barratt (ref. 13) are shown in fig-

ure 2-11. The figure shows that the convection velocity varies across the

I.0_ I
"_'" _x I UcU ]

l \

\ I O At Yl:45D

t \- I Q At ?', : 1.5 OQ

o_ xx

I J
-.1 0 .1 _2

Figure 2-11. - Radial distnDuUon ol convecUon vel_cm,. ,From rel. _3
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mixing region but not nearly as much as the mean velocity. It is equal to :he

mean velocity and to about 0.62 Uj at the center of the mixing region, where

most of the turbulent energy is concentrated. These curves vary very little

wltn axial distance Yl"

2.5. 1.3 Power emitted per unit length of iet. - In this section we use the

measurements described in section 2.5. 1.2 to estimate #'(yl), the power

emitted per unit length of the jet. This quantity can be approximated by mul-

tiplying the power emitted per unit volume given by equation (2-41) by the

cross-sectional area of the jet A(Yl) to obtain

2
3KP0u,4 / 3 1 + M c

_"(Yl ) _ A(Yl) (2-45)

54 (1- Mc2) 416_Cor _

First consider the mixing region. The cross-sectional area of this an-

nular region is

A(Yl) = IrD x (Thickness of mixing region) -

7rDY 1

We can estimate the correlation length l

_l
1

and

f

and Uma x in equation (2-45) by

U t _ U I
Ill a X

Then upon inserting the empirical equations (2-42) to (2-44),

becomes

#'(yl) _ 5x10 -7 K
P0U8D 1 +M2c

equation (2-45)

(2-46)
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This shows [since M c is independent of yl ) that the power emitter per unit

length of the mixing region is independent of axial position Yl"

Notice that, since the local mean velocity U in the mixing region (say

along the centerline) is independent of Yl' equations (2-42) and (2-44) imply

that within this region z[ _ flU and u' cc U. Although the experimental in-

formation is less complete beyond Yl = 4D, it is not unreasonable to assume

that this proportionality is stillmaintained (even though U now varies with

yl). Then equation (2-45) implies

UA A(y 1) (2- 47)
_,(yl) ccl

Now consider the fully developed region Yl > 8D. Since the centerline

velocity falls off as yl 1 and since the cross-sectional area increase's roughly

as y_, it follows from equation (2-47) that

(2 -48)

!

t_li×mg region

aD

\,

\', t
\

Transition reglon '_ -,_q_ortle_at to

Figure _'2-[2 DistribL,tion O! oower emission in a iet.

-YI

Fully developed
region
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which shows that the power emitted per unit length approaches zero very ra-

pidly in this region. Although the correlation len_h l becomes proportional

to Yl for large values of Yl' it appears to be fairly constant to Yl _ 20D.

Equations (2-46) and (2-48) show that the power emitted per unit length of

jet varies in the manner indicated in figure 2-12. Thus, according to these

arguments, 17 practically all the power is emitted from the first 8 or 10 jet

diameters, with most of it coming from the mixing region.

2.5. 1.4 Comparison of predicted sound field with experiments. - The

total power _M emitted from the mixing region can be approximated by

multiplying equation (2-46) by the length 4D

_M _ 2x10-6 K --
P0U8D 2

4

of this region to obtain

2
I+M c

Since the factor

2
I+M c

is a slowly varying function of Uj compared with U 8, we can replace it by

its value at M e = 1/2 to obtain

% 8x10 -6 K
P0ujSD 2

5
co

If roughly one-half the power comes from the mixing region, tile total sound

power emitted by the jet _T is approximately

_T _ 1.6x10 -5 K 00U8D2 (2-49)
5

c o

17'3, ":' reasoning used in this section is, of ('otlFs_2. highly approximate' and the
:_,etual O5_t,ibuti_m of emitted power in the jet is still controversial.
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This is the nowfamous U8 law of jet noise obtainedby Lighthill. The small
size of the number 1.6x10-5 is a consequenceof the inefficiency of the quad-
rupole source. Measurementsof the soundemission from subsonicair jets
with low initial turbulence levels indicate that the "Lighthill parameter"

8 2/ ',5
_T/(P0UjD /Co)is.about Hence, considering the very approximate

3x10 -5.

nature of the arguments, equation (2-z}9)is in very good agreement with the
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"E

8O

?0
15 30 45 60 75 QO 105 120 i;5 150

Anglefromietaxis,8,deg

Figure 2-14. - Experimentaldirectivity datafrom reference 22. Jet nozzle diameter, D, 5.08 centimeters 12in. ).

observations. For jets with high initial turbulence, 18 the Lighti_il! ;;armr, e[er

can increase by more than a factor of 30.

The good agreement of the eighth-power law with the experimental data is

iilustrated in figure 2-13. This figure, taken from reference 22. is ,a cnm-

posite of Lewis data and data taken by Lush (ref. 23). Equation (2-40) shows

that the directional pattern of the jet noise is the result of the convection fac-

tor (1 - M e cos 0) -5, which arises from the motion of the turbulent eddies rel-

l_Most )ets with high initial turbulence produce considerable interim! nui:_e, w:-ich

is difficialt to separate from the jeL nulse.
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ative to the observer, and the factor

1+ c°s40 + c°s20)2

which results from the structure of the sound sources and is called the "basic

directivity pattern" by Ribner (refs. 11 and 12). Because of the large expo-

nent (5) the directivity patterns tend to be dominated by the convection factor.
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Since most of the sound is probably coming from the mixing region, it is rea-

sonable to assume that M c is approximately equal to 0.62 Uj/c 0. The di-

rectivity patterns predicted by (1 - M c cos 9) -5 with this value of M c are

compared with the air-jet sound field measurements of Olsen, Gutierrez, and

Dorsch (ref. 22) in figure 2-14 and with those of Lush (ref. 23) in figure 2-15.

(The level of the theoretical curves is adjusted to go through the experimental

data at 90 ° from the jet axis, where the convection effect is zero. ) It is shown

in section 6.7 that this agreement can be considerably improved by accounting

for the effect of the jet velocity field on the convective amplification factor.

The figures show that the measured sound intensity tends to decline at

small angles (<20 °) to the jet axis. It was suggested by Powell (ref. 24) that

this drop is caused by refraction. Thus, it is shown in section 1.3.3 that, in

the geometric acoustics limit, the sound propagating in the flow direction will

be turned by the mean flow into the lower velocity region. Hence, the sound

which is emitted in the downstream direction will be bent out through the sides

of the jet, leaving a reduction in intensity along the axis. The effects of re-

fraction on the sound field are discussed more fully in chapter 6.

2.5.1.5 Spectra. - The sound heard by. an observer at the side of a jet

progressively deepens in pitch as he moves downstream. But since the turbu-

lent eddies are also being convected downstream, the results of section 1.8

indicate that there should be a rise in pitch due to the Doppler shift. It has

been conjectured by Ribner and MacGregor (ref. 25) that there are two effects

which counteract the Doppler shift and produce the observed concentration of

low-frequency sound in the jet axis. The first of these is a consequence of the

self-noise term in equation (2-39) having a higher peak frequency than the
19

shear noise term. Since the former term is independent of direction while

the shear noise is beamed downstream, this results in a net concentration of

low-frequency sound on the axis. The other effect is a consequence of the

high-frequency sound being more susceptible to retraction by mean flow than

the low-frequency sound.

19

For example, if Rll varied with time as e -(w{r)n for any integer n, eq.

- 2(wf-r) n
(2-37) shows that Rllll would vary as e , indicating that the la_c.r term had

a higher characteristic frequency than the former.
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2.5.2 Supersonic Jets

The arguments used in section 2.2.3 to show that the right side of Light-

hill'sequation could be treated as a source term do not apply at supersonic

speeds. As a consequence, the acoustic analogy approach may no longer be

valid. Nevertheless, we shall attempt to use itas a guide to obtain a quali-

tative explanation of certain aspects of supersonic jet noise.

2.5.2.1 Emission of Mach waves. - The discussion in section 2.5. 1 is

for the most part limited to subsonic flows. Indeed, for supersonic convec-

tion Mach numbers the denominator of equation (2-32) (on which this discus-

sion is based) will go to zero and as a result F(_, t) will be infinite at all

points where 1- M c cos e = 0 (i.e., at points which lie on theMach cone of

the moving eddies). However, the inequality (2-31), used in the derivation of

equation (2-32) from equation (2-30), no longer holds at these points. But

since any reasonable correlation function must vanish at large times, the

term

x c0(1 - M c cos 0

in the integrand of equation (2-30) must also vanish at these points. Hence,

the integrand in equation (2-30) can still remain finite.

The factor (1 - M c cos 8) 5 in the denominator of equation (2-32) is the

result of source convection effects. As in the case of a point monopole

source, discussed in section 1.8, it causes the sound intensity to increase

whenever the sound sources move toward the observer. However, in the

present case an additional effect resulting from the decrease in the cancella-

tion between the component monopole sources which comprise the quadrupole
2O

causes the exponent of the convection factor to be larger. At zero velocity

this cancellation causes the quadrupole source to be very inefficient. But the

effect decreases as the source acquires a larger component of velocity in the

direction of the observer. In fact, when M c cos 0 = 1, the source is ap-

proaching the observer at precisely the speed of sound. As a result, the

20There are also certaindifferencesbetween the present case and the point mono-

pole source which resultfrom the source occupying a finitevolume of space.
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sound emitted by the elements of the quadrupole further from d_e observer

cannot overtake the sound from those nearer the observer. At this condition

the cancellation effect is absent and the sound behaves as if it were emitted by

a monopole source. Because of this decreased cancellation, we expect the

sound field to be relatively intense in the direction

-1 1
0 = COS

M c

Moreover, equation (2-29) shows that in this direction

..,o.,.,.,,fi,.oh-- - Hijk/ , w < dy' (2-50)

Iw(x) _ 2c05 x6 co x

Thus, the wave number of the sound field is the same as that of the turbulence

which produced it, as itis in subsonic flow. But it is now the zero-frequency

(stationary) components of the turbulence which produce the sound. Hence,

the sound is being emitted by an essentially frozen convected pattern of turbu-

lence and the process is therefore analogous to the sound emission by a mov-

ing projectile. 21 For this reason it is called eddy Mach wave radiation.

In order to obtain an expression for the sound field which is finite in the

Math wave direction, we take the inverse Fourier transform of equation (2-50)

to get

Then separating the vector

lion x/x and its component

) l

" These ideas are discussed from a different point of view in chapter ,J.

x RijkZ (y,, _, ro)d_; dy' dr 0

.into its component _n in the Math wave direc-

ts perpendicular _,) this direction __s .-Jlc_w_ in

143



AEROACOUSTICS

Figure 2-16. - Coordinate system for ,Mach ',;.ave

equation.

fig. 2-16) shows that

And therefore that

x,.,XkX,.,i --dJJ _'_ _;-" s_''n+ _s' 1"0 d_, ctv' a;O
_n=O

This equation was derived by Ffowcs Williams (ref. 14). We might try, as we

did in the subsonic case. to use exp'erimental flow measurements to pstimate

the strength of its source term. However, because of the impossibility of

making, hot-w_re measurements at supersonic speeds, much iess ts kmown
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about tee turbulence. There is hope that, with the recent development of

laser-Doppler techniques, this situati3n will be remedied. In any event we

can still attempt to determine the dominant characteristics of the sound fieid

by performing a similarity analysis. Thus the differentiation with respect to

_n ought to scale with the jet diameter D, the integration with respect_ to

time "0 ought to scale with D/Uj, and Kijkl ought to scale with U_.

Then, dimensionally, equation (2-51) becomes

D2u 
x 2

Notice that in this case the radiated sound depends on the jet velocity to the

third power instead of the eighth. It is now generally accepted that this be-

havior occurs in actual jets at sufficiently high supersonic Mach numbers. A

typical plot of radiated power as a function of jet velocity /taken from ref. 14)

is shown in figure 2-17.

180 F-- • ._.I-

_. I..._ / 0 _D.._O0
_ .....f" _-"_ _ 0 o

_ _7

I _ '_ E _7 Turbojet Iaflermjrmrg,

....7 -'z_- _7 [] Exit velocity .Uj_c 0 : 0 g

Jet exit velocit,, J I _1'sec

Figure _-11. - Variation of total sound pov,,er level with iet velocity for super_omc nozzles ,f ro,_: ref 14 '
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(a)Ratioofpressurelustaheadofexittoatmosphericpressure,pe,pb,1.5.

(b Ratio of pressure lust ahead of exi[ to atmospheric pressure, Pe Pb, 0.8.

Figure 2-18. - Flow from a convergent-divergent nozzle at different back pressures (from ref. 45).
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2.5.2.2 Fluid mechanics of supersonic jets. The flow cilaracteristics

of supersonic jets are different depending on whether the pressure at the noz-

zle exit is greater than (underexpanded), less than (overexpanded), or equal to

the ambient pressure surrounding the jet (fuLly expanded). In the first two

cases, shock bottles will be present. The flow fields for these cases are

shown in figure 2-18. For certain operating conditions these shock bottles are

sensitive to slight pressure or velocity variations so that only a slight change

in external pressure at the jet exit can cause significant movement of the

shocks. Aside from the presence of shocks the most significant difference

between subsonic and supersonic jets is that for supersonic jets the length of

the potential core increases with Math number. The general structure of a

fully expanded supersonic jet is illustrated in figure 2-19. Surrcunding the

supersonic potential core is a region in which turbulent mixing occurs at su-

personic velocities. The potential-core length and the supersonic-mixing-

region length were measured by a number of investigators. The data of

Nagamatsu and Sheer (ref. 26) together with data of other investigators which

they collected are shown in figure 2-20.

0 Supersocfic core

T-
r

s I
t t

SupersonE,: -,_,inq _tJ_ st_region _,! i

S_usonic turbulent

region, t_'_< l

-- _m,.-- •

i

-,,,._-- Potential-core length, Lc .... _ _ _i_

I
•,,-_Supersonic length, Ls

l

-,,---- Transition region _l_-Fully develoi)ed region _'_\../'-----_""

Figure 2-19. - Parallel-ilow supersonic jet expanded to amoient pressure.

Yl
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L_

Supersonic length. Ls

Potential-core length, L c

Open symbols denote supersonic-length

data from various references

Solid symbols denote p(Aential-core-

length data from various references

_; Ref. 26 / //

\ e/ <>////

',/

/// •

//

/
.i

• 1 ,_ LO

Jet-exit Mach humor, Ujlc O

Figure 2-20. - Jet potential-core length and supersonic length as function of ]et-exit _lch number. <From ref. 26. I

2.5.2.3 Location of acoustic sources. - One ot the most tmportan_

acoustic properties of a jet is the distribution of the sound sources in the fio_v.

Three basic methods have been used to measure the location of these sources.

The first consists of operatin_g the jet through a small hole in t_ Iar_e _ound-

absorbing screen (refs. 27 and 28). The second consists of extrapolating

back from the directional maxima in the sound field (refs. 29 and 30). And

the third consists of measuring near-field pressures along the ]el bounda: F

[ref. 31). There are a numi_er o[,)b]ectlons [o usntg eaci_ _J d_est- ._l,:th_ds

(refs. 14 al_d,.,), and a Sreat deal of c:tu[ioLl _i_ouidbe _.b_;_,:_.ininterF.r:_t-
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ing the results. However, the general indication is that the maximum noise-

producing region occurs just downstream of the sonic line. The measurements

of Bishop, Ffowcs Williams, and Smith (ref. 27), which indicate that the prin-

cipal sound sources occur well upstream of this line, are an important excep-

tion.

2.5.2.4 Experimental evidence for existence of Mach waves. - A large

number of optical measurements have been made to investigate the eddy Math

wave radiation emitted by jets. For example, Lowson and Ollerhead (ref. 32)

and Dosanjh and Yu (ref. 33) have taken shadowgraphs, and Eggers (ref. 34)

and Jones (ref. 35) have taken schlieren photographs. Two distinct types of

waves which show characteristics of Mach waves seem to appear. There is

one group of waves which appear within the first few diameters of the nozzle

exit, and there is another which is not prominent in the shadowgraphs but can

be seen in the schlieren photographs. These latter waves have been observed

to extend further downstream to perhaps 8 to 10 diameters depending on the

Mach number.

Since Mach waves must always originate in the supersonic region and

since there is experimental evidence to indicate that the dominant sound is

generated downstream of this region, the Mach wave radiation may not be an

important source of supersonic jet noise. It is also argued by Tam (ref. 36)

that the frequencies associated with these waves are too high to contribute to

the dominant part of the observed acoustic spectrum.

2.5.2.5 Large-scale structure models of jet noise. - A Mach wave 22

model has been proposed by Bishop, Ffowcs Williams, and Smith (ref. 27) to

explain certain types of supersonic jet noise. Their experiments indicate _hat

the dominant noise sources are extremely large eddies which are coherent en

a scale much larger than the width of the shear layer and are clustered around

the potential core of the jet. They propose that these eddies have a relatively

ordered structure and arise from an instability of the primary flow. A mech-

anism for calculating the structure of these eddies (analogous to the one used

for laminar instability calculations) is suggested by the authors.

Tam (ref. 36) has also proposed a model (for a nearly fully expanded su-

personic jet) in which the sound generation is related to the iarge-,scai_ :iQw

22An analysis of M'mh wavo racliation bv Phillips and Pao i_ di._c,_l<,_:,,I in

chapter 6.
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structure. In Tam's model, however, itis large-scale spiral-mode instabi!-

ities involving the entire jet which are responsible for the noise. These insta-

bilities (itis proposed) arise as a result of a periodic resonant excitation by

the shock waves of disturbances originating in the nozzle. This excitation

causes the disturbances to grow in amplitude.

2.5.2.6 Noise Generated by shock waves. - In addition to the noise-

generation mechanisms discussed in the last section, mechanisms involving

shock-turbulence interactions and a feedback mechanism involving the shock

wave structure have been proposed as dominant sources of supersonic noise.

Thus, when turbulence passes through a shock wave, it causes a localized de-

formation of the shock, which results in the emission of sound. This sound,

which is broadband but still strongly peaked is usually called "shock associ-

ated noise. " Analyses of this process have been carried out by Lighthill

(ref. 37), Ribner (ref. 38), and Kerrebrock (ref. 39). This mechanism is

generally regarded as the dominant noise source in supersonic wind tunnels.

the feedback mechanism was proposed by Powell (ref. 40) to explain the

discrete tones observed in the spectrum of choked cold-model jets called "jet

screech. " Powell's explanation involves (like Tam's mechanism) an amplifi-

cation by the shock wave structure of disturbances originating in the nozzle.

However, in Powell's model the motion of the shock wave emits a sound wave

which propagates upstream to the nozzle lip. The ensuing change in pressure

• which occurs at this point will be just sufficient under certain conditions to

cause a new perturbation of the shock system, resulting in a feedback system.

2.5.3 Low-Velocity Jets: Orderly Structure

At very low Reynolds numbers the flow in a jet is laminar and produces

no sound. However, as the Reynolds number is increased the jet becomes un-

stable to small disturbances and an unsteady periodic flow is set up.

2.5.3. 1 Plane jets: edge tones. - First, consider a jet issuin_ with a

velocity Uj from a long slit of width h into an unbounded quiescent fluid.

When the Reynolds number P0Ujh/#z is greater than about 100, the jet be-

comes unstable to disturbances in a certain range of frequencies and begins to

oscillate, taking on a sinuous appearance. This unsteady _low g_ves rise _o a

hissing noise which has a peak frequency near f = 0. 055 Uj/h.
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Jet

_ Wedge .

Figure 2-21. - Experimental arrangement for edge-tone production.

Figure 2-22. - Vortex structure in edge-lone configuration.

This noise can be converted into a distinct tone of a much greater inten-

sity, called an "edge tone, " by placing an edge some distance downstream

from the slit, as shown in figure 2-21. Because these edge tones are invoived

in the sound production by flutes and organ pipes, they have been thoroughly

investigated both theoretically and experimentally. The experiments indicate

that the jet oscillations are associated with discrete vortex centers shed _ll-

ternately from the nozzle lip and the edge vortex, as shown in figure 2-22. A

plausible explanation of how this configuration can maintain itself in a stable

fashion was given by Curie (re{. 41), who extended the ideas set forth by

Richardson (ref. 42).

For any given jet velocity there is a minimum distanc_ from ,v_dz_ to _lit

below which no tone occurs. Beyond this distance the frequency of :l=e :_ne
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increases with increasing velocity and decreases with increasing distance until

a condition is reached where there is a marked irregularity in the vortex pat-

tern. At this point there is a sudden jump in the frequency of the tone. Fur-

ther increases in distance or velocity result in a continuous change in fre-

quency until a second jump occurs and so on. When the process is reversed,

the jumps in frequency will again occur - but at somewhat different values of

the velocity and distance.

2.5.3.2 Circular jets: bird tones. - When a round jet issuing from a

round hole of diameter D becomes unstable, the vortex sheath at the edge of

the orifice rolls up into a vortex ring (which is swept downstream), and the

jet resembles the sketch shown in figure 2-23. This behavior occurs for

Reynolds numbers in the range 160 < P0UjD/p < 1200. A more pronounced

periodic behavior can be obtained by allowing the circular orifice to discharge

into a pipe. This periodicity can produce pure tones. However, in order to

produce a sharp tone which is insensitive to small changes in orifice shape, it

is necessary to blow through two (suitably shaped and spaced) orifice plates.

The sound produced by this arrangement is called a "bird tone. " It occurs in

some brass instruments and when a human whistles.

The behavior of the flow from a circular nozzle is similar to that from

an orifice with the jet instability evolving from a sinusoid to a helix and

finally into a train of vortices. When the Reynolds number is increasedbe-

':'ond about 1200, the flow in the jet becomes turbulent and the periodic

/

Fioure 2-2!, - ROlIuD of a Iow-Re_nnlds-nurnber iet.
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structure gradually disappears. The jet then behaves in the manner de-

scribed insection 2.5. 1.2. However, there has been some conjecture (refs.

43 and 44) that the low-velocity periodic structure persists (even at these

high Reynolds numbers) in the form of a large-scale orderly structure of the

turbuience and that it may have a direct bearing on the production of noise

from high-speed jets.

2.5.3.3 Sensitive iets.- When a jet is on the verge of becoming turbu-

lent, it is very sensitive to muscial notes. Rayleigh (ref. 8) attributed this

behavior to the fact that, due to the instability of the vortex sheath surrounding

the jet column, the sound waves at the exit plane can easily excite interracial

waves. The "sensitive jet" phenomenon has received a great deal of study

since it was first observed in 1850. In this instance it was in the form of a

gas flame dancing in response to a violoncello.
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APPENDIX- TRANSFORMATIONOF SOURCECORRELATIONFUNCTION

In this appendix we shall transform the integrand in equation (2-13) into a

more suitable form. Since we are dealing with a stationary r)rocess, this m-

tegrand denotes the time average

T

_2Tk l (_"

A - lim __1 a2Tij (y", t')

T -_ 2T 0t 2 at 2

t?

Upon denoting Tij(Y", t') by T'.I] and using a similar convention for Tii ,J it

follows from the second equation (2-14) that

£
A - lim --1

T- _ 2T

T

a2T" a2T_ dt

Ot2 0? 2 T _2T, '

lim 1 a 2 tj " dt
= __ Tld

T- °° 2T a__2 at 2

Since all stationary functions must remain bounded even at large times, inte-

grating by parts implies that

A = lim 1

T- _° 2T FT aTE tT ---1A -- d_t _t

T
= -lim .!_ _2 _._1 ___ dt

T- _ 2T _2 _t _t

Then using the second equation (2-14), again, shows that
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A= -lira---1 _3 /T __T[J__T" dt
T- _° 2T D_.3 _ _t k_

-T

Finally, upon integrating by parts a second time, we find that

A lira I a4 #T , ,,
= -/-T Tij TkL dt

T -°° 2T az4
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CHAPTER3.

Effectof SolidBoundaries

3.1 INTRODUCTION

In chapter 2, Lighthill's equation was used to predict the sound from un-

steady flows in the absence of solid boundaries (or more correctly, from

flows where the effect of such boundaries could be neglected). However, in

many cases of technological interest, solid boundaries appear to play a direct

role in the sound generation process, and their presence often results in a

large increase in the radiated sound. Thus, solid surface interactions are

directly involved in the generation of sound by helicopter rotors, by airplane

propellers, and by aircraft engine fans, compressors, and turbines. They

also have a significant effect on the sound generated by externally blown flap

STOL aircraft, as well as by high-performance aircraft aboard aircr_ft car-

riers.

We might anticipate that solid boundaries will affect the sound field in two

ways. First, the sound generated by the volume distribution of quadrupoles in

Lighthill's theory will be reflected and diffracted by the boundaries. And _ec-

ond, there may be a resultant distribution of dipole or even monopole sound

sources at the boundaries. Dipoles are particularly likely since, as we have

seen, they correspond to externally applied forces, which occur whenever

surfaces are present in the flow.

In this chapter Lighthill's acoustic analogy is extended to include the ef-

fects of solid boundaries.

PRECEDING PAG}] I_LA;,_".[ ;,;_,'_" F.'-_",_F?
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3.2 DERIVATIONOF FUNDAMENTALEQUATION

We shall suppose that the effects of initial transients can be neglected.

Then the integral formula (1-55) can be used to obtain a solution to Lighthill' s

equation in any region _(_-) bounded, wholly or partially, by surface S(r).

But since Lighthill's equation (2-5) has the form of a stationary-medium wave

equation, it is appropriate to put U = 0 and, as a result, to require that the

functions p and G satisfy the stationary-medium wave equations (1-59) and

(1-60), respectively. Indeed, comparing equations (1-59) and (2-5) shows

(upon identifying p' with p) that

/_ _2Tij

p,:X G---- dTd_

c2 v(T) ayi ayj

t Vn Vn
+ +-- p' -p' _ +-- dS(y-')dT

cl cl
)

(3-1)

where

p, e p -- PO

denotes the fluctuating density, V n is (since U = O) the normal component of

the surface velocity Vs, and

G = G(_, "rl_, t) (3-2)

denotes any solution of the inhomogeneous wave equation (1-60) which satisfies

the causality condition (1-52) and vanishes at infinity (if ,J extends to i_inityt.

But using the identity
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_Yi

G
_T_ _ tG _2Tij _2G

---Tij - G--- - Tij
_Yj OYj _Yi 3Yi _Yj cYi _Yj

02Tij/_yito eliminate _yj and applying the divergence theorem (1-47) to

eliminate resulting volume integrals show (after inserting the definition (1-57)

of V n and the definition ni(t/_y i) of _/_n)that

fTf) 82 GP' = 12 Dy i 0y] wij d_ d'r
0

Then upon changing the names of dummy indices and introducing equations

(2-3) and (2-4), this becomes
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p, 1 i _2G dTdT + 1 a G fi dS(_dT=-- _i _-Yj Tij c_ OYi
c2 ) )

_ I nih i dS(y-)dr
2

c o _)

where

is essentially the i th

boundaries on the fluid and

fi -= -ni(P - PO ) + njeij

component of the force per unit area exerted by the

(_apvi s a__p') + ___G+ p,

\
S

h vi. PvivJayj vi

We shall consider only the case where the surfaces are impermeable to the

flow 1 so that

niv i= ni Vs for y" on S

Then

nih i= ni
P 9--_-_ + Pvi _ 7 + pvjvi _) -niPOVi --

and as a result the continuity equation (2-1) implies that

1Since our interest here is in the generation of sound and not its absorption by

acoustically soft surfaces.
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SPviG 8 G) 8Gn.h.11 = ni_ 8_ + v.l--oyj_ pvj - niP0Vi--cT (3-5)

But applying Leibniz's rule (1-48) and the divergence theorem (1-47) to

8PviG/Sy i shows that

I_. L i 8pVjG8PviG

d d_ = 82pviG d_ n.y. -- dS

d--_ _Yi _Yi 8_" 1 I 8y i
) ) )

Hence,

grated term

= ) n i(_ + v i_Syjpvj dS

after using the argument which follows equation (1-54) to omit the inte-

f_) I _-=T.

8PviG_ d_

OY i

r= -T

we find that only the last term

Lq=
-niPOVi 8_. -POVn 8_.

in equation (3-5) contributes to the integral in equation (3-3) and hence that
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p, 1 _ O dy'd_-+ 1.... Tij -- __

c_ 5Yi _Yj Co2 7)
J-T Jr(T)

_O f. dS(_d:
1

cY i

1 a---G-GdA(y-)d7
+ -- PoVn c_-

c2o /
(3 -6)

This is the fundamental equation governing the generation of sound in the

presence of solid boundaries. Itis. aside from the omission of a possible

initialtransient, an exact equation. Itapplies to any region v(7) which is

bounded by impermeable surfaces S(T) in arbitrary motion provided the

source distributions T.. and f. are localized enough to ensure convergence
i] i

of the"integrals (see footnote 9 of section 2.3).

In the acoustic analogy approach we assume that the stress tensor Tij

and the surface force fi can either be modeled mathematically or determined

experimentally. Then the right side of the equation is known, and the density

fluctuations in the sound field can be calculated. The first term represents

the generation of sound by volume sources. The second term represents the

sound generated by unsteady forces exerted on the fluid by the solid boundar-

ies. The last term represents the sound generated asa result of the volume

displacement (thickness) effects of the surface.

In any given problem there will usually be many possible choices for the

fundamental solution G in this formula. But it should be chosen to obtain an

optimum approximation to tile sound field from the available iifformation about

the sources fi and Tij. Since this involves a certain amount of intuition, it

is important to study some of the specific applications of this equation. The

rem_tinder of the chapter is devoted to this task.

3.3 FFOWCS WILLIAMS - HAWKINGS EQUATION

When the region v is all of space, the surface integrals in equation (3-6)

will not be present, and the only possible choice of G will be the free-s_xaee
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Green's function G O given by equation (I-38). In this case, equation (2-11)

(which was the starting point for the jet noise analysis in chapter 2) is re-

covered. Now even when solid boundaries are present, there is no reason

why G cannot stillbe taken as the free-space Green's function. In this sec-

tion, we investigate the consequences of such a choice.

3.3.1 Derivation of Equation

Since equation (1-38) shows that G O depends on y" and x" only through

r = Ix" - Y'I, it follows that

_G0 - DG0 (3-7)

_Yi axi

Hence, inserting equation (I-38) into equation (3-6) shows that

0'- I_ _2 1 6 -T r dy'dr

c20 ?'xi ?xj 4,7r - Tij
)

1 _ 1 6 - r - r fi dS(y--)dr

c_ _xi 4_rr)

+ 7 47rr 77

)

(3 -8)

In order to carry out the integrations over 7. it is convenient to introduce

a Lagrangian coordinate svst@m, say _'(y.r). in which the surface Sir) re-

mains fLxed. Then the velocity V and the acceleration a" of any poiat _ of

this coordinate system ,_re given ov
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-
er

Constant

_ r)
ar

Constant

(3-9)

J

And since each point on the surface S(T) is fixed in this system

7v (3-1o)

for all points on S(r).

Let us now suppose that the region u(r) occupies the exterior of the im-

permeable surface S(r), as shown schematically in figure 3-1. The last term

in equation (3-8) appears to represent a monopole source. And ifthe surface

S(r) were expanding and contracting in such a way as to cause its enclosed

volume to change with time, we would certainly expect this term, which repre-

sents the sound generated by volume displacement effect, to be a monopole.

However, ifthe surface moves in such a way that the volume of the interior

region Vc(r) does not change with time, we might expect this source to de-

generate into higher order sources. Thus, it is shown in books on elementary

fluid mechanics (ref. I) that the time rate of change of an element of volume

in the Lagrangian coordinate system is proportional to the divergence of the

velocity _ of a fixed point in this system. Then if the volume of Vc(r) is to

UIT_

S qrl

Figure 3-1. - Movinq-c_rdinale aur:ace.
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there will be at least one _-coordinate system such

v. v = 0 (3-1D

at all points within _'c' But when this condition is satisfied, equation (3-A3)

of appendix 3. A can be used with

f(r, r) - 4"rrcl 8 - r -

to transform the last integral in equation (3-8) arid thereby obtain

p, 1 8 2 1 6 - _" U...... _r T.. dy'dr

cg _xi 8xj ) 4ar c O

c_ Oxi 47rrs(r)

1 _ 1 6 - r --- P0aj
exj 4rrr c o

c0 _,c(r)

+
1 e2 . __1 6 -

2 _x i 8xj 4_r
CO r)

T - P0ViVj
dT (3 -12)
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<3 _IT_

[i _

-" Y2 <

Figure3-2 - Coordinatesystemfixedin asurface.

Thus, the volume displacement effect of the moving surface results in a dipole

source proportional to the acceleration of the surface and a quadrupole source

proportional to ViV j.

Instead of evaluating these integrals for a solid surface in arbitrary mo-

tion, we shall restrict our attention to the case where the surface is rigid. In

this case we can choose the T-coordinate system to be Cartesian (as shown in

fig. 3-2). Thus, the coordinate axes can translate with a velocity V0(T ) and

rotate with an angular velocity _(T) but must always remain Cartesian. In-

deed, any book on classical mechanics (e.g., ref. 2) will show that the veloc-

ity _ of any fixed point _" in this coordinnte system is

(3-13)

We shall carry out the integrations over the delta functions in equation (3-12)

by introducing this coordinate system. To this end, recall that the Jacobian

of the transform

between two Cartesian coordinate systems is unity and that the element of sur-

face area dS(_) in the _-coordinate system is equal to the element of surfa(:e

area dS(_ in the j-coordinate system. Then since the limits of integration of

the volume and surface integrals are independent of T iv.the _-coordinate
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system, the order of integration can be interchanged in these coordinates to

obtain

o'- _1 ___2 _.1___ ___ r Ti jd d_"

e 20x i 8xj 4,vr

)

___!fi dS(_')
c 2 _x i 4_r e 0

1 a 1 6 - r- r POaj d d_"

Co2 8Xj 4_r

t o )

_2

5 - _J0 " IV l
+ .... r r - ;." . _1 d$

Co _x i _xj , 4rrr

',to )

where we have allowed T to approach _.

The integrations over r can now be carriedout by usingthe identity(I-128)

with g equal to r - t + (r/c0). Then, since it follows from equation (3-9_ that

(_)_:-"*_o_(_S#='-___ (3-14)

(where
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M = (3-15)

co

and F = if'- _), carrying out these integrations yields tile Ffowcs Williams -

Hawkings equation 2 (ref. 3)

'  2 [rTi,leP' 4_TC2 aX i 0Xj 1--F. 1_
r

T= T

dS({)

4_c__xi r ,-_.
r T= Te

4zrc_ ax] r 1 F _I
r

0)

d_

1"= T e

f[ i1 ?.2 ....p°vivj d_-

4_c[_xi_x rI-_.
A_'0 ) ,. r . ,-=7

(3 -16)

2The emiation actu:tilv c%vised bv Ffowcs Williams an, t Hawi<inas is m,J '. _:_'P,_., "

in that it does not require that the surfaces be rigid.
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where the notation [ ]7.=_Te indicates that the quantity enclosed wi[hin the

brackets is to be evaluated at ? and the retarded time Te = ?e(._, t, __-'), which

is obtained by solving equation

g(%, t,_, _') -- % - t + ! _"_ R_'. %) = o
c O

(3 -17)

And ifmore than one solution to this equation exists (as itdoes at supersonic

speeds), each term in equation (3-16) should be interpreted as a sum over all

such solutions.

3.3.2 Interpretation of Equation

Comparing equation (3-16) with the solution (1-144) obtained in section 1.8

(for a point multipole source moving with a constant velocity) shows that each

moving volume element d_ outside of S(_-)emits an elementary wave which is

r-I<,_e)/' \,_

d_ ill \\ <i*tl

. ollowed

9_.T _-I<,tl

Fiqure 3-3. - Noving-source configuration.
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d_"the
same as that emitted by a moving quadrupole source of strength Ti_j

(see fig. 3-3), that each element of surface area dS(T) emits an elementary

wave which is the same as that emitted by a moving dipole source of strength

-fi dS(_), and that each moving volume element d_ within S acts as if it

emitted elementary waves which are the same as those emitted by a dipole

source of strength -P0aj and a quadrupole of strength P0ViVj.. The first

term corresponds to the solution which arises in Lighthill's theory. The di-

rect effects of the solid boundaries are accounted for by the remaining three

terms. The first of these represents the sound generated by the fluctuating

force fi exerted by the solid boundaries on the fluid. The remaining two

terms represent the sound generated by the volume displacement effects - the

dipole term resulting from the acceleration of the surface.

Ifthe velocity V of any point of the source region is supersonic, the

Doppler factor

C _" --- 1 - r_-. _I: 1 - M cos 8 (3-18)
r

which occurs in the denominator of each term in equation (3-16) vanishes at the

angle

8 = cos -1 1 (3-19)
M

This introduces a singularity of the type discussed in section 2.5.2 with the

resultant emission of Mach waves. The emission of these intense shock waves

by solid surfaces moving at supersonic speeds is a well-known phenomenon.

3.3.3 Curie's Equation

When the surface S is stationary,

(3-16) reduces to Curle's equation (ref.

5= Y', and equation
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pT _

i __ /Tij4 co2 i axj T

-- t - dS(D

47rc 2 8x i r c0/

(3-20)

3.3.4 Far-Field Equations

3.3.4.1 Derivation. - Now suppose that S is bounded and that the volume

source region remains concentrated near this surface. We shall require that

the velocity V be subsonic at each point of this region so that the Doppler

factor C t can never vanish. Then equation (3-16) can be simplified when-

ever the observation point is sufficiently far from the source region. In order

to accomplish this, notice that applying the chain rule to equation (3-17) shows

aI_xj/,r + ai_j1 _Ter _ axj
e \_ 7X

-0

But upon using equations (3-14), (3-17), and (3-18) to eliminate

equation, we find that

T="re

g from this

Hence, applying the chain rule to an arbitrary function f(x', re) shows that
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8f

ax i _f rlc0--_r 1

T=-Te

(3 -21)

and therefore, in particular, that

8r ri ri 8r 8yj ri
at T = Te

8xi r _e rC ?coC_ r 8yj

(3 -22)

Now each integral in equation (3-16) involves a first or second derivative

with respect to x i of a term of the form

A(_) ]

r_C_U l-=_Te

where (in order to simplify the notation) dependence on _ has been sup-

pressed. But since A does not depend on _" explicitly equations (3-22) J.nd

(3-18) show that as r--oc

JT=Te 1 = O(r -2)

7e

Then equation (3-21) shows that

7='7 e

+ O(r -2)
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and hence that

8x. ax. IC?[J r=re [c20-_- C r=re
1 j , ar c t ar I

Thus, at large values of r, equation (3-16) can be approximated by

f _ -- :4.[4rrc

_/_,(t o)

r.r. ]1

r3C * _.r C ? _r ]C? r=-re

+,f[, dS({)

4rrc r2C 1" Jr [C_I r=

js(t0) re

q- .......

4rrc t _r ]CtJr=re

,/%(t 0)

+ _ L,_ _4:c I _'r C t .r ]C'j

j _,c(to) '-' e

d .-= (3-23)

When the surface S is stationa.ry, the retarded time is a linear function

of t. Hence. derivatives with respect to retarded time can be rei,_._,.,,..........._nv
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derivatives with respect to t and equation (3-23) reduces to

p, xix] / _2Tij t- ' r_00/ xi I_fi I_, r /

-- -- t - dy'+ -- t - dS(_

;o

This shows that no sound is radiated by st2.tionary surfaces when the

source functions T..n and fi are steady (i. e., independent of time). How-

ever, equation (3-23] shows that, even if the sources are steady, sound will

be emitted whenever the surface velocity _¢ (and as a consequence C ?) de-

pends on time. Thus, when the sources are steady, accelerative motion of a

surface (which occurs, for example, on a propeller) will. result in the emission

of sound, whereas a steady motion will not. Of course, this conclusion only
T

applies for subsonic velocities (for which the convection factor C never

vanishes).

Surfaces moving with a constant supersonic velocity will generate shock

waves which will reach the far field and be sensed as sound (often called a

sonic boon,).

3.3.4.2 Compact sources. - We saw in section 1.5.3 that the structure

of the radiation field from a fixed source region becomes particularly simple

when this region is compact. This is a consequence of being angle to neglect

the variation in retarded time across the source.

3.3.4.2.1 General equations: A similar simplification can be obtained

for a moving source region. To this end let 5)" denote a distance across such

a region. Then it follows from the mean-value theorem that the corresponding

change in retarded time Ar e is approximately

r_-F

aT e - _-e(y'+ 6y-') - Te(y-) _ e
Yi 6yi (3 -24)

But ,;ince a)plying" the chain rule to equation (3-17) shows that

178



EFFECTOF SOLID BOUNDARIES

_g + _g _Te- 0

cYi _Te _Yi

this equation becomes

Hence,

-_T _ 1 r.6 _-

e c0(1 - M cos 8) r

the change in retarded time across the source region is roughly

AT e
1 L

1 - M COS _ Co

where L = 16 'Iis a characteristic source dimension. As pointed out in sec-

tion 2.4.2.3 (for the case of moving eddies), -_'e represents the time it takes

a sound wave to cross the moving source region.

Now let 7-_ denote a characteristic time for the source fluctuations mea-

sured in the moving frame. If this time is large compared with the variation

in retarded time _T e across the source region, that is, if

L .(,::_ _" (3-25)

Co(1 - M cos _)

itwill be possible to neglect retarded-time variations in the integrals in equa-

tion (3-23). We shall also suppose that the variation in Mach number across

the source region is sufficiently small so th,ttthe convection factor C _ can be

treated as a constant in these integrations. Then, with these approximations,

equation (3-23) becomes
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RiRj _ 1 8 [Qij (Te)
+ %P0_vO (Te) vO _]

i j (_-e)|

1 o*I J

Ri a

3 t 2_" e
4v, c0C0R

(3 -26)

where Te now denotes the retarded time at the center of the source region,

R denotes the vector from the center of the source region at the retarded

time Te to the observation point x" V.0 and a 0' 1 i are the velocity and acceler-

ation of the center of the source region

.t _v °
= 1 (T e) R

R
C o

(3 -27

is the net volume enclosed by S, and

Qij: / Tij dT

and

fS _
Fi(t ) : fi([, t)dS([)

represent the integrated strength of the extermtl qu,tcirupoies a,_d Lhe ncc . .,:

exerted by the surface on tile [luic[, rz, spectiv¢iy.
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The first term in equation (3-26) is clearly a quadrupole source and the

second is clearly a dipole. If the approximation (2-7) is used, the quadrupole

will be of the order p0 u'2, where u' denotes a typical fluctua-strength Tij

tJng velocity. The dipole strength fi is (upon neglecting viscous terms in

eq. (3-4)) approximately equal to the fluctuating pressure p'. However, in

most fluctuating flows, p' is of the order p0 u'2, so that the source strengths

should be roughly equal. For example, Uberoi (ref. 5) showed that

p' _ 0.8 p0 u'2 for isotropic turbulence.

. If these two sources are of equal magnitude and if their spatial and tem-

poral scales are roughly equal, their ratio will be of the order

L

T_C0(1 - M COS 8)

Hence, equation (3-25) shows that in this case 3 the quadrupole source can be

neglected, and equation (3-26) becomes

p!

Ri

4_c3C_0R2 _e

0
Fi(T e) + VcP0a i (_'e)

fc l
(3 -28)

3.3.4.2.2 Special results for stationary surfaces: When the surface S

is stationary, equation (3-28) reduces to

x. 5Fi _---'/
p, l x (3 -29)

4uc3x _ t c o

where

3This equation was obtained by Lowson (ref. 6) without the acceic_.-:ttion _crm.

Tkis term was included by Ffowes Williams and Hawkings (ref. :_).
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f

Fi(t) = JS fi(_' t)dS(y-) (3 -30)

And the inequality (3-25) now shows that this equation applies when

L__<< T_ (3-31)

cO

Then (since the time average is independent of translations) the average sound

intensity from a time-stationary flow is given (see eqs. (1-14) and (I-123)) by

y I xix j dFi(t) dFj(t) (3 -32)

16 2c_P0 x 4 dt dt

Suppose that the unsteady forces generating the sound are caused by a

turbulent flow with mean velocity U and correlation length l. Then, as in-

dicated in section 2.5.1.2, the turbulent eddies will evolve slowly in time

compared with the time

l

which they take to pass a fixed observer (Taylor's hypothesis). The forces in-

duced on any fixed object should therefore fluctuate predominantly on the latter

time scale. Hence, the inequality (3-31) becomes

L <<l (3-33)
M

where
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U
M= --

cO

is the mean-flow Mach number. Thus, unless M is very small (in which

case the sound field will be negligible), the characteristic source dimensions

must be small compared with the turbulence correlation length.

Equation (3-32) can be used to obtain similarity relations (analogous [o

those obtained for jet noise) for the sound field generated by a fluctuating flow

in the vicinity of a small stationary object. Thus, if Tf denotes the charac-

teristic period of the fluctuating force, we anticipate that

ari 1 F {2
_t 8t 2

zf

and if U c denotes an appropriate characteristic velocity of the flow,

2 2
L

and

L
Tfcc__

U c

Hence, it follows from equation (3-32) that

_ P0U6L 2
Ice

c3x 2

The total radiated power #D will therefore be proportional to
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6 2
P0U cL

_D cc
3

c 0

Comparing this with the relation

P0U8c D2

_Q oc __ 5
c o

obtained in section 2.5.1.4 for the total sound power emitted from a volume

quadrupole source shows that their ratio is

% \Co/

Hence, the lower the Mach number, the more likely it is that surface dipoles

are important relative to volume quadrupoles.

Equation (3-29) implies that the cross correlation

F2(t)p(t + i-)

between the lift fluctuation acting on a body and the far-field sound pressure

_oulci be proportional to the time derivative

A
F2(t)F2(t + 7)

_v

of the lift autocorrelation function. Clark and Ribner (ref. 7) measured the

cross correlation of the sound and lift fluctuations on a small airfoil in a tur-

buieat jet. Their results are shown in f_ure 3-4. They attribute the small

discrepancy (27 percent max. ) to the false enhancement of lift resultin_ from

m.odel vibrations.
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I. 0

o _ Z_-

•5 (t+ "_0)

0 o
[] rn

-.5
I _o I I I I

.2 .4 .6 ,8 1.0

Time. T. msec

Figure 3-4. - Comparison of cross correlation of lift and sound pressure and first derivative
of autocorrelation of lifl - both normalized, iFrom ref. 7. )

3.4 CALCULATION OF AERODYNAMIC FORCES

In order to use the equations derived in the previous section to predict the

sound field, it is necessary to determine the fluctuating force F i acting on the

body. This force can either be determined through the direct measurements

or calculated analytically from the unsteady flow field in the vicinity of the

body. In this section a number of the analytical methods are described.

The calculation of these forces is, in general, a very difficult task. All

the purely analytical results obtained so far involve the assumption that the

fluctuating velocity is small compared with the steady velocity. This allows

us to linearize the unsteady flow calculation.

Thus, it is assumed in this section that the unsteady flow is the result of a

frozen small-amplitude disturbance pattern (called a "gust") being convected
A

past a stationary body by a uniform mean flow iU . This means that the mag-

nit,tde of the disturbance velocity u = {u v, w _ is small L'om_{red to U

and that far upstream from the body the flow velocity _U + _: is steady (but
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spatially nonuniform) in a reference frame moving with the mean velocity
^

iU . This might, for example, be a good approximation for a turbulent flow

which (as we have seen) changes slowly in time in a reference frame moving

with the mean flow. We also assume in this section that the flow is incom-

pressible, with the effects of compressibility being deferred to chapter 5.

3. q. 1 Quasi-Steady Approximation

First, consider the case where the spatial scale of the disturbance is

large compared with a typical dimension of the body. Then it is not unreason-

able to assume that the forces acting on the body follow the same relations as

they do in a steady flow. This is called the "quasi-steady" approximation.

Thus, we assume that the lift and drag forces acting on the body (L and D,

respectively) are given by

L : 12 p0V2CLA t
D = 1 p0V2CDA

2

(3-34)

L

Y2

\ /

Y3

Figure3-5. - Cooroinatestor orienting_oo_,relalive1c,ancor'l:n,_ Ho,.',.
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where A is some suitable cross-sectional area of thelmdy, V is the up-

stream velocity, and the liftand drag coefficients, C L and C D. respectively,

are functions only of the orientation of the body relative to the oncoming flow.

This orientation is usually characterized by specifying t_vo angles, say

a and y, which determine the direction of the oncoming flow relative to three

mutually perpendicular axes fixed to the body. Thus, With these axes, denoted

by (Yl' Y2' Y3 )' the angles a and 7 can be defined in the manner indicated in

figure 3-5. The case of most interest is probably that of a thin, relatively

two-dimensional body. (For example, blown flaps and fan and compressor

blades certainly fall into this category. ) Then a can be taken as the change

in angle of attack and y as the angle between the projection of oncoming flow

onto the plane of the airfoil and the mean-flow velocity U (see fig. 3-6}.

),

u_ u_
=Yl

Y3

:[gdre }-,5. -:oordina[e¢. for ,_rier_llng _:rfoH-shaled body relat_,_ to or_comlna t;o_',.
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The total oncoming flow ve!ocitv_ V is _.,,_-__n by.

v 2 : ( uoo + ( uoo (3-35)

But since _o is assumed to be small compared with

neglecting squares of small quantities that

Uo6 , we find upon

-- 8C L _C L _ _C L
C L _CL+--a +--_ _CL+

8a _

voo _C L w
+

_o_ U _y U
oO oC

8C D voo $C D woo
CD _C-D + -- +

and

V 2 _ U 2 + 2u U
oo oo oO

where C L and C D denote the time-averaged lift and drag coefficients, and

the lift and drag slopes are taken as constants. Hence, it follows from equa-

tion (3-34) that the fluctuating lift and drag forces

are given by

L' -L - L and D' -D - D

(8C L _C L _)
L' = lp0AU _ __voo +--w + 2CLU

2 \_oE _y

D'= _I _CD
2P0AU_ v +--w + 2 u ,

(3 - ? _,",

The first two terms in each of these equations represent the response of

the body to transverse gusts, the last terms represent the response to a

lon_itudinal. _ust. For slender bodies 4. C D _ 0 and as a result the _1,_,,_,...:..,_.._,,_

4Sin('c we are usually interest, I in hi2h lh,vn_)lds numb(,)" fl,_\',<
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lift will dominate over the fluctuating drag. For a two-dimensional Hat plate

at a small angle of attack (say a0) to the oncoming flow _U , 8CL/"?'o_ = 2T

and C-L = 2no0" Hence, for a two-dimensional gust (_ = {u , v ,0}) the

first equation (3-36) becomes

L' _ P0Uoo_v + 2_vPoUooaoU
A

But since a 0 is assumed to be small, the second term in this equation should

be negligible compared to the first and

L'_ 1 dCL

A 2 P0U°°v°° dot - P0U_v°°n (3-37)

This equation also applies to two-dimensional airfoil shapes with small

thickness and camber. It shows that in a two-dimensional flow the fluctuating

liftacting on such bodies is due solely to the fluctuations in angle of attack

caused by the upwash velocity voo. We shall see that this conclusion holds

even when the quasi-steady approximation does not apply.

3.4.2 Calculations Based on Unsteady-Thin-Airfoil Theory

For thin5 bodies, it is possible to obtain results which apply at much

higher frequencies 6 than the quasi-steady approximation. The development of

this subject began in the middle 1920's with the work of Wagner (ref. 8), who

determined the growth of lifton an airfoil startin_ impulsively from rest. Ten

years later, Theodorsen calculated the lifton a sinusoidally oscillating airf_ql

(ref. 9). Then K{issner (ref. 10), in addition to providing a general approach.

iutroduced a unit response function (called the Kussner function) which relates

the fluctuating lifton a two-dimensional airfoil to a step change in the upwash

velocity. In 1938, yon K_irm_in and Sears (ref. 11) devised a general approach

which could be used to calculate the liftfor any small-amplitude motion of a

5In a direction perpendicular to the flow.
f;That is, for much smaller scale clisturl)ances.
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two-dimensional airfoil. And in 1941, Sears (ref. 12) used this result to ob-

tain a simple expression, called the Sears function, for the fluctuating lift due

to a frozen sinusoidal gust impinging on a fixed airfoil. The remainder of this

section is concerned with Sears' problem and its generalizations.

3.4.2.1 Formulation of problem. - Consider a stationary (nonmovinz)

thin body subject to a small-amplitude gust with a velocity u- . Since the am-

plitude of the incident disturbance and the thickness of the body are now both

small, we anticipate that the deviation _ of the velocity _ from the mean
^

velocity iU will also be small. Hence, _ will be determined (to the first

order) by linear equations. We shall also suppose that the flow is inviscid

and incompressible. Then substituting

_'=iU +_ (3-38)
oo

into the inviscid continuity and momentum equations (1-1) and (1-2) (with

P = P0 and the source terms omitted) shows, upon neglecting terms involving

squares of _, that

a___W+uo ° a_ _ 1 Vp (3-3 c)

aT aYl P0

and

v-_=0 (3 -40)

It is convenient to put

_z = _" + _" (3-41)
oO

where _ can be thought of as the velocity fluctuation which would exist if the

body were not present. Then _ will coincide with the nonuniform flow far

upstream from the body ifwe insist that
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And since w becomes equal to _ at large distances from the body, we

should require that _oc itself satisfy the continuity equation (3-40). Thus.

v.ff =0
OQ

(3-43)

But since u"

flow,

is steady in a coordinate system which moves with the mean

--+U -0
oO

81- 8y I

Hence, itfollows from equations (3-39) to (3-44) that

equations as _, namely,

(3 -44)

_" satisfies the same

O'r 8Yl PO

Vp (3 -45)

V- _'= 0 (3-46)

For a stationary object in an inviscid flow the appropriate boundary condi-

tion on the surface of the body is that n . v'(the normal velocity to the surface)

vanish. But in view oi equations (3-38) and (3-41), this implies

nlUoo + n. _ = -n- u" for y" on S (3-47)

The boundary value problem posed by equations (3-45) ami (3-46) an(1 me

boundary conditions (3-42) and (3-47) is identical to the one which determines

the flow due to a thin flexible body moving with a constant velocity U

thr_ugh a uniform sta[ionary fluid while'osci!la[iag :vsrma! :o itscK -viti_ :h_

velocity -n • _. Then the velocity iU + u represents the flow due to a

flexible body oscillating normal to itself (with velocity -n • _) in a uniform

stream. This implies that the _nsteady flow resulting from the convection of

a frozen disturbance past a fixed body can be determined by solv:_g :i_¢, proL -

lem of an undulating body in a unKorm stream.
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Up to this point, the effects of viscosity have been neglected. However,

any real fluid possesses at least a small amount of viscosity and this can have

a significant influence on the flow! Thus, a small amount of viscosity causes

the flow about a thick body to separate from the surface, forming a flow pat-

tern which is completely different from that predicted by inviscid flow theory.

In the present problem, the effect of a small viscosity can be accounted for by

allowing the solution u" to be discontinuous along a sheet extending from the

trailing edge.

In order to understand the nature of this discontinuity, consider (for

definiteness) a two-dimensional airfoil impulsively accelerated to a uniform

velocity from a state of rest. Initially, the action of viscosity will cause a

very thin boundary layer to form along the surface of the airfoil, with the re-

mainder of the flow being inviscid and irrotational. There will be one stagna-

tion point at the leading edge and one near the sharp trailing edge. as shown in

figure 3-7(a) Since the trailing edge is sharp, there will be a high velocity

and a consequent low pressure at this point. Then since the pressure at the

rear stagnation point is high, there will be a large adverse pressure gradient

between these two points which causes the boundary layer to separate and

form a concentrated vortex, as shown in figure 3-7(b). But the velocity in-

duced by this vortex sets up a circulatory flow about the airfoil which shifts

the rear stagnation point to the trailing edge and thereby eliminates the large

pressure gradient. Then, as shown in figure 3-7(c), the vortex separates

,_ _L_r_ r>rIrdi3si_ql

I)I ff'(i",j[!)Q _)[ , _,r!_

Ficjure 3-l. Initiation or flow aboL_tan airfoil s!arlinq Irom resl
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from the trailing edge and is swept downstream to iMinity. (It therefore does

not need to be included in the calculation of the steady-state flow. ) The re_tr

stagnation point remains at the trailing edge, and hence there are no large

changes in pressure in this region. This is known as the Kutta-Joukowski

condition.

A similar process takes place in a periodic flow. However, a new trail-

ing vortex is shed every time the lift. and hence the circulation around the

airfoil, changes. Thus, there is a continuous trail of vorticity forming a

vortex wake, which must be included in the analysis. The strength of this

wake is determined by assuming that the Kutta-Joukowski condition is satis-

fied at the trailing edge.

If the body is sufficiently thin and the amplitude and frequency of the un-

steady flow are not too large, we can assume tha_ the wake is infinitely thin

and lies in the plane of the airfoil (which we shall take as the yl-y 3 plane)

(see fig. 3-8). R can be shown that the normal velocity and pressure should

be continuous across this wake but the tangential velocity will, in general, be

discontinuous.

Y3
Figure 3-_. -Wakeonosciilati_rj+hin _irtoil.
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Because of the boundary condition (3-42) we can require that

aslY-'l

But taking the curl of equation (3-45) shows that

a +U xu 0
_Y

Hence,

Vx_'= 0

everywhere except perhaps in the trailing vortex sheet.

that there exists a velocity potential @ such that

u = -V@

and equation (3-46) shows that (l,satisfies Laplace's equation

W2(l,= 0

Equation (3-42) implies that _ must satisfy the boundary condition

V¢l,- 0 as [y_ -_

at infinity, and equation (3-47) implies that

A

V_= -_" u'= nlU _ + n.

(3 -48)

This equation shows

(3-49)

(3-50)

(3-51)

must satisfy the condition

for _ on S (3-52)

194

on the surface of the body.

Hence, u" can be found by solving Laplace's equation (3-50) subiect to the

boundary conditions (3-51) and (3-52). But in order co satisfy the Kutta-

Joukowski condition, the solution _ will, in general, have to be discontinucua
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across the trailing vortex sheet. In addition, it will be necessary to allow 4,

to have a singularity at the leading edge (which must be chosen as the weakest

one consistent with the Kutta condition).

Since the nonuniform incident flow velocity _ is time independent in a

coordinate system, say y", moving with the mean flow, it can be represented

by the three-dimensional Fourier transform

K" 9

Or since y'_ is related to the fixed coordinate system y" by

y-_= y'-IU T (3-53)

this becomes

: / a'(k)ei(_" _-klU_)d_

Thus, the disturbance can be represented as a superposition of plane waves.

Equation (3-43) now implies that

"a- k'= 0 (3-54)

And since the vector k is in the direction of propagation of the waves, equa-

tion (3-54) shows that their amplitudes are transverse to their direction of

propagation. For this reason they are called transverse waves.

Since u is determined by linear equations and boundary conditions, the

solution for any disturbance velocity _ can be found simply },v sup_rp,_s:_,j

solutions to the problem for an incident harmonic gust

-- - i(_. _--klU 7)
u = ae (3-55)

Hence, it is only necessary to consider an incident disturbance of IJle iype
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The only coupling between the incident disturbance uoo and the "scat-

tered" velocity u" is through the boundary condition (3-47) on the surface of

the body. For a single harmonic disturbaace this becomes

i(k.y*-kiUoo _-)
-n- _'= V¢= niUoo +n. a-e for y" on S (3-56)

For a thin flat body, such as a strut or airfoil at small angle of attack, it

can be assumed that the body lies nearly in the yl-y 3 plane, as shown in fig-

ure 3-8, and the surface boundary condition (3-56) can be "transferred" to

this plane. Thus, the equation for the surface S can be written in the form

Y2 - ef(Yl' Y3)_ 2 = e2g(yl, y3)

where g(Yl' Y3 ) > 0 on the projection of the body on the yl-y 3 plane and g = 0

corresponds to the edge of the body. For a thin body, E is a small param-

eter. The equation

Y2 = _f(Yl' Y3 )

¢,.s-determines the "mean surface" of the body, and E is its thickness '_

fribution. Then the normal vector _ is to within first-order terms in

where the upper sign refers to the upper side of the body and the lower sign to

the lower side. Since a" is the of the same order as the thickness param-

eter c, the boundary condi[ion _3-56) is to withir, first-order tc'::',_ in

196



-£

EFFECT OF SOLID BOUNDARIES

_I---- ± 1 U i(klYl+k3Y3-klU_T) = -u 2 - _

I/ _Y22_-'g _y _ + a2e

for Y2 = 0 and g > 0 (3 -57)

The trailing wake can also be assumed to be in the Yl-Y3 plane.

Notice that the first term on the left side of equation (3-57) - which con-

rains the effects of thickness, angle of attack, and camber - is independent of

-iklU_r
time. The second term is proportional to e Since the problem is

linear, its solution (and as a consequence, the force acting on the body) will

also consist of a time-independent term which involves the effects of thick-

ness, camber, and angle of attack and a time-dependent term which is inde-

pendent of these effects. Thus, in the linearized approximation the effects of

thickness, camber, and angle of attack contribute only to the steady force

acting on the body and make no contribution to the unsteady force. Hence, for

the purpose of calculating the oscillating force, the body can be replaced by a

flat plate having the same yl-y 3 projection. The boundary condition (3-57)
then becomes

• i(klYl+k3Y3 -klU_)
-u 2- - a2e for Y2 = 0; g> 0 (3-58)

_Y2

3.4.2.2 Solution to two-dimensional problem. - Solviag equation (3-50)

subject to the boundary conditions (3-51) :rod (3-58) is a difficult task, and the

best that can usually be done is to reduce the problem to an integral equation ? .

However, an exact closed-form solution can be obtained for a two-dimensional

disturbance incident on a two-dimensional body (strut or airfoilS.

In this case, equation (3-55) becomes

7Fai fly efficientcollocationtechniques have been developed Lo sol_e _hese eQua-

tions.
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_" = _ei_ I(yl-U_r)*k2y2] (3-59)
oo

where _" is a two-dimensional vector in the yl-y 2 plane which satisfies the
transverse mode condition

alk 1 + a2k 2 = 0 (3-60)

And the boundary condition (3-58) becomes

ikl(Y 1 -U_T)
u 2 = -a2e for y2 = 0; -C<y 1 <c

2 2
(3-61)

where as shown in figure 3-9 the plate lies between -c/2 and c/2 on the

yl-axis. Since the boundary conditions are two dimensional, the solution

must also be two dimensional. Hence, the velocity

u'= iul(Yl' Y2' _') + ]u2(Yl' Y2' T) (3 -62)

only has components in the Yl- and Y2-directi0ns and these are independent of

of Y3"

This problem was first solved by Sears (ref. 12). The solution is ob-

tained by a somewhat different approach (based on complex variable theory) in

-c/2

Y2

c/2

Figure3-9. - Two-dimensionalproblem.
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appendix 3. B. It is shown that the pressure jump across the plate _p(yl)

(i. e., the net force per unit area) is given by

"iklU_r I/(c/2) -yl (3-63)

Ap= 2a2P0U e S((rl) V (c/2) + Yl

where

S(o'1) :

-i_l_O(-i_ I) + Kl(-i_l) _

is called Sears' function, K 0 and K 1 are modified Bessel functions,

_klC

_1- 2

and

is the reduced frequency. The latter quantity is related to the frequency

w = klUo of the fluctuating force by

¢oC

_I - 2U

The variation in pressure along the airfoil is determined by the factor

(c/2) - Yl

(c/2) + y i

which is the same as that on a flat plate at a small angle of attack in a steady

flow. Since
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2

/c/2

2

._/(c/2) - Yl

YO + Yldyl

/(C/2)- Yl

(--_+ Yl dyl

c

4

equation (3-63) implies that the fluctuating force always acts through the

quarter-chord point.

For acoustically compact sources (see section 3.3.4.2), only the total

fluctuating force per unit span is needed to calculate the sound field. This

force, F2, is perpendicular to the flow 8 and (as shown in appendix 3.B) is

given by

-iklU_r
F 2 = ,7a2P0Uooce S(_ 1) (3 -64)

By using the asymptotic expansions for the modified Bessel functions

(ref. 13), it can easily be shown that

S(_l) ~ as _1 - _

Thus, Sears' function approaches zero at very high frequencies, which im-

plies that an airfoil will be unaffected by gusts of sufficiently high reduced

frequency.

At low reduced frequencies, the Sears' function approaches unity_ and

equation (3°64) reduces to the quasi-steady approximation (3-37).

Itwas shown by yon Karman and Sears (ref. 11) that the difference

8!_hich is to say it _s a !iCt force,
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between equation (3-64) and the quasi-steady approximation is equal to the lift

resulting from the "apparent mass" variations 9 plus the lift generated by the

vorticity in the wake acting back on the body. The former effect occurs when-

ever a body undergoes an unsteady motion in an inviscid fluid even when no

wake is present.

Sears' function can be approximated to within a few percent over most of

exp i_ 1 2(1 + 2aa 1

8(_1 ) _ for _i -> 0 (3-65)

I + 2_a I

its range by

Notice that it approaches the same high-frequency limit as Sears' function.

The approximation for the amplitude was first suggested by Liepmann

(ref. 14), and the approximation for the phase was suggested by Geising,

Stahl, and Rodden (ref. 15).

At high frequencies (wc/2Co= U_o_l/C 0 > 1) the fluid cannot be considered

incompressible even when Uoo - 0 since the time for an acoustic disturbance

to cross the chord is no longer short compared with the period of oscillation.

Hence, Sears' function cannot be used to calculate the lift at these frequencies.

But even at low frequencies there has been surprisingly little experimental

verification of the validity of equation (3-64). However, low-frequency

(_1 < 1) oscillating airfoil data collected by Acum (ref. 16) show discreuancies

of the order of 10 to 20 percent when compared with the Theodorsen function

(which is the oscillating airfoil counterpart of Sears' function).

The principal assumptions in the yon E_[rm_n - Sears theory appear to be

those related to the wake. Namely, that the wake lies in the plane of the air-

foil and that the Kutta-Joukowski conditiot_ holds at the trailing edge. I_ >:dc_'

to check these assumptions (at least for the case of oscillating airfoils), flow

visualization studies were carried out by Bratt (ref. 17) (using smoke) and by

Ohashi and Ishikawa (ref. 18) (using schlieren photography). Some oi ti_e wake

9"Fhnt ::_, the fot'ce t'c_tuErcd to ' _*+ {ho su,:!'o,i' _ _lcce_er: _ zd ir,_ fl_i:.,!
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(a-D Reduced frequency, o 1, O.5.

(a-2) Reducedfrequency, ol, l.&

ta) R_ion I.

Ib-l) Reducedfrequency, o I' 2. 15.

202

tb-2) Reduced frequency, o ], 2. 05.
Ib) Region II.

_cl Region Ill; reduced frequency, o I, 8.5.

Figure 3-I0, - Variallon olllo_,patternw_th reducedlrequency. _From rel. LZ.p
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profiles observed byBratt are shown in figure 3-I0. They illustrate the effect

of varying the reduced frequency while holding the amplitude of the oscillatlons

fixed. Three distinct regions of wake behavior can be detected. At low ampli-

tudes and reduced frequencies (region I), the assumption that the wake lies in

the plane of the airfoil appears justified. At intermediate frequencies (re-

gion If), the wake moves like a whipping string and the linearized approxima-

tion may break down. At higher reduced frequencies, the vorticity in the wake

becomes concentrated in discrete lumps which are shed alternately from oppo-

site sides of the trailing edge. The approximate ranges of amplitudes and fre-

quencies in which these various types of behavior occur are shown in figure

3-11, which is taken from reference 18. Ohashi and Ishikawa found that the

Kutta-Joukowski condition was satisfied over the entire range of frequencies

3

2

[

Region Characteristic

/ t I J Assumptions of linear theoryhold
\ " I II J Whipping-string behavior

\ J [I[ I Discrete vortex shedding from
-- \ / ] trailing edge ,

_ _ Regfon [I/

Region [ _

I I I l
.1 .Z .3 .4

Ratio of amplitude of oscillation to blade chord

;igure 3-II. -4_aKer)atterns _From ref. lg.)
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and amplitudes of their experiments.

There is no guarantee that conclusions based on experiments for oscil-

lating airfoils will be valid for stationary airfoils subject to unsteady flows

(which is the case of principal interest in aeroacoustics problems). However.

experiments involving airfoils inunsteady flows are extremely difficult to per-

form, and good data are almost nonexistent. Arnoldi (ref. 19) produced a

periodic unsteady flow by placing an airfoil in the K_rm_n vortex street (see

section 3.5.1.2) of an upstream cylinder. _is results, which are at a high

reduced frequency (_1 = 3.9), show that Sears' function does fairly well in pre-

dicting the phase of the fluctuating force but underpredicts the amplitude by

almost 50 percent. This discrepancy could be due to the occurrence of flow

separation in his experiment or to the fact that the higher harmonics in the

vortex street are not accounted for. His results are plotted as phase vectors

in figure 3-12. The reason for including the short vector is explained in the

next section.

We have seen that (in the linear theory) the angle of attack and camber of

the body have no effect on its fluctuating lift. And equation (3-64) shows that

.2 m

Eq. 170)_, ////_r

dCl '"" Experiment

/ ] I
.1 .2

Re el° [SlOl )

Figure 3-[2. - Comparison of theorelical and experimental Sears' function in high-
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a

Figure 3-13. - Cambered airfoil at angle ol attack.

-- ,ii

the fluctuating force depends only on the upwash component of the disturbance

velocity a 2 and not on the chordwise component a 1. In order to account for

the dependence of the fluctuating lift on the chordwise velocity, angle of at-

tack, and mean camber (see fig. 3-13), the analysis must be carried to sec-

ond order. This was done by Horlock (ref. 20) for an uncambered plate at

angle of attack a. His work was later extended by Neumann and Yeh (ref. 21)

to include a parabolic mean camber (with maximum camber 6). The results

of these calculations show that the fluctuating lift F 2 is the sum of three

terms (refs. 20 and 21)

F2= F2+FI'a+F_' f

where F_

are given by

is the function (3-64) obtained by Sears. The two additional terms

-iklU 7- t

F 'a = 7ralP0U ca e oo T(al )

-iklU_T
F_'f= 2nalP0U_o6e U(cr 1)

• j

(3 -66)

where T(a 1) is the Horlock function (ref. 20) which is related to Sears'

function by

T(g 1) = S(Crl)+ Jo(crl) - iJ1(_l)
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and the function U(al) given in reference 21 can be put in the form

iaiK0(-ial)J0(a I) - iK0(-ial)Jl(_l) + _1K 1(-ial)Jl(a I) 4
+ -- Jl(al)

U(_I) = S(_I) _I

3.4.2.3 Three-dimensional effects. - Equations (3-63) to (3-66) apply

only to bodies which are infinite in the Y3-directi°n" For real bodies, these

formulas should be modified to account for "end effects. " Bender (see

ref. 22) has recently shown that the end correction for a flat plate (still for

two-dimensional disturbances) can be approximated fairly accurately by mul-

tiplying equation (3-64) by the ratio of dCL/d_ (the steady-state liftslope) to

27r(the liftslope for infinite-span thin airfoils).

The problem of a two-dimensional flat-plate airfoil subject to the full

three-dimensional disturbance field (3-55), called an oblique gust, has been

studied independently by Graham (ref. 23), Filotas (ref. 24), and Mugridge

(ref. 25).

A simple way of obtaining an approximate solution to this problem is to

divide the plate into a number of strips (parallel to the flow) and treat each

strip as if itwere a two-dimensional plate subject to a two-dimensional gust.

The local amplitude of the gust is used to calculate the fluctuating force on

each strip. Thus, in the "strip theory" approximation, the fluctuating liftper

unit span is given by equation (3-64) with a 2 replaced by the local upwash

velocity a2 eik3y3 to obtain I0

i(k3Y3 -klU T)
F 2 _ rra2P0U oce S(_l) (3-67)

Graham (ref. 23) arrived at an exact seminumerical solution to the

problem in the form of a series whose coefficients can be calculated sue-

lOSince the solution is coupled to the disturbance field only through the boundary

condition (3-58), only the longitudinal and transverse components, k 1 and k3, of the
wave number influence the fluctuating lift.
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cessively. This is an improvement over the collocation procedures, which

must be used for thin bodies of arbitrary shape. Filotas (ref. 24), however,

gives an approximate expression for the lift which reduces to the approxima-

tion (3-65) of Sears' result for two-dimensional gusts and gives the correct

high-frequency limit for an arbitrary gust. This approximation can be written

as

i(k3x 3 -klU _')
F 2= rrP0U a2ce F(@,a) (3-68)

where

F(@, 0")"_

1 + fro(1 + sin 2 _ + rrcr cos $)] 1/2

k 1
_h = tan -1

k 3

and

It is also shown by Filotas that the center of lift is only fixed at the quarter-

chord point (as found by Sears) in a purely two-dimensional flow. In fact,

whenever three-dimensional effects are present, the center of 1Kt wilt _tp-

proach the leading edges as cr approaches in.finity. This me.u_s _h_ q_e ed:<e
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region becomes progressively more impoctant as a source of sou;_d as q_,:-

chord becomes large with respect to the wavelength.

Mugridge (ref. 25) derived an approximate multiplicative correction

M(ol, _3) to the strip theory approximation (3-67) which accounts for the ef-

fects of the streamwise vorticity in the wake resulting from the nonuniform

loading of the airfoil by the oblique gust. 11 His results, which are only ac-

curate for

show that the amplitude of the correction factor is given by

{_ 2

_1 +--
2

IM(Crl, a3) t : # (3-69)
2

+--

2
ff

where

C

_i = 2ki i= 1,3

3.5 CALCULATION OF SOUND FIELD FROM SPECIAL FLOWS

In the remainder of this chapter the general formulas derived in the

preceding sections are used to calculate the sound fields emitted by a number

of specific flows. These flows have been chosen either because thev are of

teehnoiogical interest or because they illustrate certain fundameatai ideas.

11
*_e assumes that on :.ne _tirf,_,_! _.}_e str.c.:!mu,ise ve:-ticitv can b,: _c_!c. :: ,i ._nd

that the spanwise vortieity acts as if the flow were two dimensional.
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3.5.1 Flows with Sound Field Determined by
Ffowcs Williams - Hawkings Equation

The calculations in this section are all based on equation (3-23).

3.5. 1.1 Sound emission from a thin strut in a turbulent flow. - We shall

first consider a long strut or airfoil fixed in a turbulent (time stationary) flow

of finite lateral extent (as it is in a jet). This problem is of technological in-

terest because it relates to the broadband sound emission from flap segments

under the wings of externally blown flap aircraft and from internal support

struts and splitters in aircraft engines as well as from propellers and air-

craft engine fans. The configuration is illustrated in figure 3-14.

We would like to use the simplified equation (3-29) to calculate the sound

field. However, equation (3-33) shows that the former equation will apply at

reasonable Mach numbers only if the characteristic dimension L of the body

is smaller than the eddy size. This is frequently the case when L is taken

as the chord c of the airfoil but not when it is taken as its span b. However,

equation (3-29) can still be used to calculate the sound emitted per unit span of

the airfoil and (since the problem is linear) the results can be summed to ob-

/////l y2

-,__. .__4__z___,z_ ,4_
Turbulent -_ #"' _ / _/x ''_

;;g ;:e 5 14. - goc.rdinate s,s_em _or st_ aL
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tainthe total sound emission. To this end we write equation (3-29_ in the form

P'(z]Y3)~ 4_c_x2 dt - Y3

where

r : ]_" - I¢Y31 = x -x3Y--._3 + O(x -I)
x

is the distance between the observation point and the point along the strut from

which the sound is emitted and p'(x_ y3) is the density fluctuation at _" emitted

from a unit length of strut at Y3" Hence,

= fb/2
p,(x-") J-b�2 p,(x_Y3)dY3

The normalized pressure autocorrelation function F defined by equation

(1-125) is then given by

r(_', r) - _F2(t'IY3) aF2(t"tY3') dy_ dye'
at Ot

(3 -70)

where

x 3
t' = t + -- y_

cox

X3 y_,t"=t+T+--
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This result could also have been obtained from the dipole term in equation

(3-20) by neglecting the chordwise retarded-time variation while retaining the

spanwise variation. It represents the sound which would be emitted by a line

of dipoles placed along the span of the airfoil - the strength of each point di-

pole being adjusted to account for the total emission over the chord.

By using the manipulations described in the appendix of chapter 2 and the

fact that the correlation is independent of translations in time (since the flow

is time stationary), we put equation (3-70) in the form

r)-

16'72c_P0 x4 _T2 d-b�2 d-b/2

F2(tt y_)F2(r0l y_')dy _ dye' (3-71)

where

x 3
r 0 = t + _- + -- (y_' - Y_)

xc 0

Upon introducing the separation vector 773 : y_' - y_ as a new variable of

integration, the double integral in this equation becomes

b/2f(b/2)-Y3

/2 J -(b/2)-Y3

F2(ttY3)F2(T01Y3 + '13)d773 dY 3 (3-72)

But it is reasonable to assume that the correlation length of

F2(tlY3)F2(T01 Y3 + w/3)is of the same order as the turbulence correlation

length along the strut, which we shall suppose is much smaller than the

span b. Hence, the length 7/3 over which the integrand in equation (3-72) is

nonzero is small compared to b. The limits of integration in the inner inte-

gral can therefore be _enas -_ to _ so that equation (3-Tl)becomes
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r(_', T) -
-x 2 _2

16_2c_°0 x4 aI2 #-b/2 Q/-_

F2(t IY3)F2(_'0 [y3 + _3)d_/3 dy3 (3-73)

One might at this point be tempted to neglect the retarded-time variations

which appear in TO by arguing, as we did in chapter 2, that the decay time of

the turbulence is large compared with its correlation length. However, we

must realize that in this formula the time is measured relative to the fixed

frame so that its characteristic value can be much shorter than the time asso-

ciated with the oscillations of the eddies.

Since the spectrum T w of the average intensity is the Fourier transform

of F, equation (3-73) shows that

ly- -- H22 3; --' dY3

L(x 5
(3-74)

where

H22(Y3;k3,_) =
(2n)2

x F2(Y3,t)F2(Y 3 + 73 , t + T)d_" d_/3

is the power spectral density of the fluctuating lift force on the body.

We shall again suppose that the turbulence can be assumed to be frozen

during the time it takes to transverse the strut. Then (as shown in section

3.4.2.3) the fluctuating lift force acting on the strut due to a single Fourier

component

a,_(k) e

of /he turbulence upwash velocity must be of the form
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a2(k')g(kl, k3)e i(k3y3 -klU°° T) (3 -75)

provided the mean flow velocity U can be taken as a constant. And if we

also assume that the turbulence is homogeneous, the moving-frame turbulence

correlation

"=<_0_'_> u_<__, _>_[_+_o _+ _]

can depend only on the indicated argument, and as a result it follows from

appendix 1. A that the moving-axis spectral density ,I_22(k) of the upwash

velocity is given by

_k".(_'n-iU T) - -
e " _ _22(k)dk (3-76)

These equations are used in appendix 3. C to show that the lift power spectral

density is related to _22 by

H22(Y3;k3, w) =

Hence, equation (3-74) becomes
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L(_) = I-'w(x, 8, _o)

= f_ w, w sinO sin_o

8c_x 2 Co

2

x 4_22 k2,

\
---_ sin 8 sin _1 dk 2
c 0 /

(3-77)

where we have put _(kl,k2) : g(kl,k2)/:P0CU _ and introduced the spherical

coordinates 8 and _ defined in figure 3-14.

When k 3 : 0, equation (3-75) represents the response of the strut to a

two-dimensional gust. Hence,

klC (3 -78)
_(k i, 0) = s(_ I) _I - 2

where S is Sears' function. Equation (3-77) therefore shows that the sound

intensity in the plane perpendicular to the strut (_0 = 0 plane) depends only on

the two-dimensional response function (i. e., Sears' function). In the general

case, _ can be approximated either by using Filoms' equation (3-68) or by

using Mugridge's correction factor given by equation (3-69). Thus,

_(k 1, k 3) = F(@, or)
kl c_,/k2

= tan -1 _ a.nd _= + k 2
k3 2Y

(3-79)

if Filotas' equation is used; and
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ifMugridge's correction is used.

Itremains to determine the spectral density function 022. This can be

accomplished by assuming an idealized model for the turbulence. Thus, ifwe

assume that the turbulence is isotropic, the spectral density tensor Oij takes

the form (ref. 26)

E(k) _ _ki"j7147rk 2

where

Hence, the upwash spectral density becomes

022 - _ +
4_k 4

And ifin addition it is assumed that the moving-frame longitudinal correlation

function _22(J_2) is given by

--_ -_2/l
_22(J_2 ) = u2e

we find that (ref. 26)

E(k) =

m

u28k 4

_l(l-2+ k2) 3

and as a result that
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4,22 -

m

Substituting this into equation (3-77) and performing the integration now shows

that

Y(x,o, _ ) - /2_0 2(_0 (Pl_\c'T __"_s_n

where

is the reduced frequency,

U_

M-

c o

is the free-stream Mach number,

h 2 =- _(1 + M 2 sin20 sin2_)

_tnd

Thus, upon introducing the approximation (3-65) to Sears' function, equation

(3-78) shows that
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9 9 9

_ _)2 sin-_ ,70
I (x,O,O)- 3bPou2 M o 4

32

/3@-2 2 \5/2+ CrO) (i + 2rr(rO)

(3 -81)

in the plane perpendicular to the strut (_p = 0 plane). And more generally,

Mugridge's approximation (3-80) shows that

i{x')-_ \D
M 3 sin20 cos2qo h2e 2

+ (1 + 2_0)

+--

t+ V

Equation (3-81) can easily be integrated over all frequencies to establish that

the mean sound intensity in the plane perpendicular to the strut is given by

I-_x, 0, O) - 3bcP0U_M4 E(a)sin28 (3-82)

16c0rx2

where

E(e) -
o_

\3/ i
J

and

c_"
o/ ---_

}
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int

0 ......4D" -"--

Figure3-15. - Configuration of strut experiment. Nozzle diameter, D, 10 centimeters 14in. >;
blade chord, c • 9/32 D; blade height, b • _/_D; distance to observation point, x, 4. 56 meters
(15ftl.

Notice that E(c_) becomes equal to 2/3 at large values of _. In fact, E(ot)

remains within 10 percent of this value whenever _ is greater than 2.

In order to verify this analysis, W. A. Olsen of the Lewis Research

Center measured the sound emission from a long thin symmetrical strut in

turbulent jet. The strut was centered in the mixing region 4 diameters down-

stream from the nozzle, as shown in figure 3-15. The geometric parameters

which appear in the analysis are indicated on the figure. The acoustic param-

eters can be estimated from the measurements summarized in section

2.5.1.2. These results show that we should take Uoo = 0.62 Uj, where Uj

is the jet velocity. It is also reasonable to take l = (l 1 + l 2)/2 and

/_= 1/2 U_nax. Then equations (2-42) and (2-43) show that I _ 0.3 D and

/--_-_ 0. 129 Uoo (where D is the jet diameter). The theoretical directivity

i_attern, obtained by inserting these parameters into equation (3-32) is corn-
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o._

0

m:

0

II0

100_

90--

80_

70
0

impingement

-- velocity, -- Theory

u_,
m/sec 0 0 0 0

I I I I I' 1
20 40 60 80 I00 120 140 160

Angle from nozzle inlet, m"- B. deq

Figure 3-16. - Comparison of data and theory for strut experiment. Nozzle diameter, D,

I0 centimeters (4 in. ); ratio of distance to observation point to nozzle diameter, xID, 4;
_,0°.

pared with Olsen's experiments 12 in figure 3-16. The agreement is seen to be

quite good. Nevertheless, the restriction c << I/M which we imposed on the

analysis is only moderately well satisfied in the experiment. And the require-

ment that Uoo be constant over the strut is not even approximately satisfied.

Notice that the former restriction is most closely satisfied at the low veloci-

ties, where the agreement is best.

3.5.1.2 Aeolian tones. - An interesting application of equation (3-28) is

the prediction of Aeolian tones. These tones are heard in the singing of the

wind through telephone wires and leafless trees and in the whistle of the ten-

sion rods of airplanes and the rigging of ships. They were first studied by

Strouhal in 1878, who was mainly concerned with their frequency.

The nature of the flow about a cylinder moving through a fluid with a sub-

sonic velocity V 0 is mainly determined by the Reynolds number P0VOD/p

based on the cylinder diameter D. At sufficiently small Reynolds numbers,

12The first combined analytical-expemmental study of sound enUssion from s_>lid

bodies in jets was carried out bv Sharland (ref. 27).
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the flow is steady and its main effect is to cause a drag force on the cylinder.

However, the flow becomes unstable to small disturbances at a Reynolds num-

ber of about 50, and the wake starts to oscillate beginning at a point some dis-

tance downstream of the cylinder. As the Reynolds number is increased, the

oscillations in the wake move toward the cylinder until a Reynolds number of

about 60 is reached. At this point the oscillations appear as the alternate

shedding of lumps of fluid from the top and bottom of the cylinder. Most of the

vorticity in the wake is now concentrated in these lumps, which move down-

stream in a regular array called the Kh.rm_.n vortex street. This behavior

persists to a Reynolds number of about 104. The periodic shedding of vor-

ticity into the wake exerts a periodic tangential force on the cylinder and, as

was first recognized by von K£rm_n and Ruback, it is this oscillating force

which is principally responsible for the Aeolian tones. The angular fre-

quency w of the force is equal to the frequency of vortex shedding

w = S t 27rv0 (3-83)
D

where the Strouhal number S t 'depends on the Reynolds number but is approx-

imately equal to 0.2. The vortex shedding also induces a periodic drag force

on the cylinder. However, this force was found to be quite small compared

with the fluctuating lift force, and we neglect it in the following discussion.

If the cylinder is not rigidly supported, the fluctuating lift force might

cause the cylinder to oscillate and (as can be seen from eq. (3-28)) this oscil-

lation will result in an additional source of sound. However, the Aeotian tones

usually refer to the sound generated by the oscillating force, and we shall limit

the discussion to the case where the cylinder is rigidly supported.

Thus, we consider a circular cylinder of length b and diameter D mov-

in_ with a constant velocity V 0 in the xl-direction through a fluid at t-,_r_

infinity. Suppose that the long axis of the cylinder is parallel to the

x3-direction. The _'-coordinate system which is carried with the cylinder is

shown in figure 3-17. In this figure the cylinder is shown in its position at the

_:ne of e.'_ission
T e •
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.I> 'c,2

\
\ -

- Xl,<I

Figure 3-17. - Coordinate systems for sound emission from Aeolian tones. (Cylinder shown in its location

at emission time te. )

As in the last section we let F2(t I 43 ) denote the fluctuating lift force per

unit length acting on the cylinder at the point _3" Then the total lift force

F2(t) is given by

[b/2
F2(t) = .l-b/2 F2(ti _3)d_3

(3-84)

Ithas been found experimentally (ref. 28) that this force is given approxi-

mately by

O 2

F2(t I _3 ) = K De
2

(3 -85)

where _ is a numerical constant which is founa to lie between 1/2 and 2.

This variation probably results from the extreme sensitivity of the force to the
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amount of turbulence in the oncoming stream and from the dependence of the

phase 4, on the length of the cylinder and the geometry of the flow system.

The variation in 4, along the cylinder reflects the fact that the vortex shed-

ding is only in phase over a relatively short length of 3 to 4 diameters. The

frequency w is given by equation (3-83). Hence, the characteristic time T_

of the oscillation is

2_" D

w 0.2 V 0

The inequality (3-25) therefore shows that equation (3-28) can be used to pre-

dict the sound from this flow only if

M << 5D
1 - M cos @ L

where L is a characteristic dimension of the cylinder

- T0
M=_

c O

and

cos e = R.
R M

For the very low Mach numbers at which Aeolian tones occur, this in-

equality is certainly satisfied with L = D. In many cases of interest, how-

ever, the cylinder is many diameters in length and the inequality is not satis-

fied with L = b. Hence, as in the previous section, we apply equation (3-28)

to calculate the sound emission per unit length of cylinder and sum the results

to obtain the total sound emission.

0 equal to zeroSince the cylinder velocity V 0 is constant, we can put a i
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and neglect the derivative of Ct0 with respect to Ve (since it yields higher

order terms in R -I when _ is in the radiation field). Then inserting equa-

tion (3-27) into equation (3-28) shows that

R 2 aF2(Tel {3)
p'(_] [3) ,-, (3-86)

where

= _" - k_3 - _ COMTe (3-87)

_e=t _It

c o

and p'(_ _3 ) is the density fluctuation at _" emitted from a unit length of

cylinder so that

fb/2 p,(x--']_3)d_3
p'(x-) = Y-b/2

(3 -88)

Since equation (3-87) shows R 2 = x2, substituting equation (3-85) into (3-86)

and using equations (3-83) and (3-88) implies that

But for large }',
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R= lff'-I{_'3 - c0iMTel = R 0 - x3_'----._3+O(R;I 1

R o

where

R0 = k" - i CoMT e

is the value of R at the center of the cylinder. Hence, replacing R by

R 0 - (x3_3/R0) in the exponent of equation (3-89) (and by R 0 in all other

places) and substituting the result into equation (3-88) yield

P'_) ~ . igStP 0 sin 0 cos _p e-iW -(Ro/Co)

4c3R0(1 - M cos 0) 2

X__b b/2

/2
sin 0 sin _p + @(_3)]t

d_ 3 {3-9o)

where, as shown in figure 3-17,

w

R 0
cos 0 = -- . l

R o

1_0 x 2
sinO cos co= --. j-

R 0 R 0

R'o x3
sin ._sin _ =--. k-

R 0 R 0
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Since R 0 and e depend on t, the density fluctuation is not periodic.

However, as shown in section 1.8.4, the observation point can be removed far

enough from the source so that 8 and R0(t ) are nearly constant over one

period of oscillation and hence equal to their values, say R0(t0) and

8 0 = e(t0) , at some time t o during this period. Thus, the results of section

I. 8.4 imply that for time intervals of the order of one period

o,v0,0CO x{[ to]},c_0.o<_o)(,_ _OS_o)' _ co__o _o

x/ exp i _3 sinO Osin¢+ _(_3) d_3

J -b/2

(3-91)

Hence, it is possible to define an average intensity over the effective period

Tp = 2___(1 - M cos O0)
¢#

Then since

2 P0

for any simple harmonic density fluctuation, it follows from e,4_.la_ioa t3-{.l)

that
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T_

°
-

X_b/b/2fb/2"

J-b/2

exp_II_O_ sinO sin,p+ d_(_3+_)-_(_311 d_3 d_

(3-92)

where we have put

and dropped the zero subscript on 0 since, now that the intensity has been

calculated, there is no need to distinguish between t O and t.

We shall consider two limiting cases. First, suppose that the cylinder

length b is smaller than the length l over which the phases of the vortices

are correlated 13 so that the vortex shedding is roughly in phase over the length

of the cylinder. Then

i[4_(_3+_ ) -4_(_3) ]
e _1

But, since equation (3-83) shows that w_/c 0 changes by an amount

co b _ (27z)(0.2)M b

c O D

and since the Mach number is fairly low, we also find that

.__(ico/'Co)}sin O sin
e _1

13The cylinder would then have to be less than 4 diameters in length, and end

effects could become important.
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over the range of integration. Hence, equation (3-92) becomes

_ K2St2b2p0(V0)6 sin20 cos2q_
I~

32c_R2(1 - M cos 8) 4

(3-93)

Now suppose that the cylinder is very long compared with the correlation

length l. Changing the variables of integration to _3 and _ in equation

(3-92) shows that

K2S_P0(V0) 6 sin28 cos2¢

fb/2 f(b/2)% -_(_3t d_d_3× ei(W/Co) _ sin 0 sin q_ ei[_((3+_)

./-5/2 _' -(b/2)-(3

(3-94)

However, ifthe correlation length is small compared with the length of the

cylinder, we can (as in the last section) take the limits of the inner integral

to be -_ to _.

It is reasonable to assume that the correlation coefficient

fb/2 i[_l -_1_31]
1 (3 +4)
- e d( 3

b J-b/2

of the fluctuating force acting on the cylinder is Gaussian and therefore equal

to e -(_2/2/2). Then since
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sin_ sin _p -

equation (3-94) becomes

_ _ _4_oo(vO)°_:0 co_
_cb_(_-_ co__1_

}
Ifthe Mach number is so small that the exponent can be neglected, this for-

mula differs from the short-cylinder formula (3-93) only in that b2 is re-

placed by _/_ lb.

These formulas (without convection effects) were obtained by O. M.

l:hillips(ref. 28) in 1956. By using a model for the wake flow, Phillips de-

termined that K should be approximately eq,al to I. A comparison of equa-

tion (3-95) (with the convection f_ctor and the exponent neglected) with

Phillips '14 measurements is shown in figure 3-18. The close agreement tends

to verify the formulas derived in this section.

As the Reynolds number is increased and the wake behind the cylinder be-

conies Lurbulent, the vortex shedding mechanism appears to persist in _.less

14phillips took _"_-_l m 17D.
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i00

2OO

I
0 100 200 3_0

Figure 3-18. - Comparison of Aeolian tone measurements

with experiment. (Data from ref. 28.) Cylinder velocity,
1300 < VU< 2000 cmlsec; Reynolds number, llO < Re < 1_,
nozzle diameter, D, 0.0123 centimeter (0.0048 in. ).

organized state with randomly shed, large-scale verticity causing broadband

lift fluctuations and hence broadband noise. In fact, even at very high

Reynolds numbers a surprisingly distinct large-scale eddy structure is found

to exist in the wakes of cylinders. These eddies appear to contain about one-

half the turbulent energy in the wake (ref. 28). Experiments at these higher

Reynolds numbers tend to show that the sound intensity still follows the predic-

tion of equation (3-95).

The formulas derived in this section are not restricted to circular cylin-

ders and should apply to cylinders with other cross sections. For stream-

lined bodies such as airfoils, random vortex shedding has been assumed to

occur and be an important source of broadband noise. However, recent ex-

periments conducted by Patterson, Vogt, and Fink (ref. 29) on typical two-

dimensional helicopter rotor airfoils in a very q-iet tunnel indicate that the
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vortex shedding noise 15 is a pure tone as long as the pressure-surface bound-

ary layer remains laminar. They found that its frequency correlated well with

a Strouhal number of 0.2 based on the total laminar boundary layer thickness

at the trailing edge. However, at higher Reynolds numbers, where both

boundary layers were turbulent, no vortex shedding noise could be detected

above the tunnel background noise. At these Reynolds numbers, measure-

ments in the wake indicated that there was no correlated vortex shedding.

It is frequently stated that the vortex shedding mechanism is the principal

source of broadband noise in propellers. A related broadband noise source is

the turbulence in blade boundary layers. A simple theoretical model for noise

generated by this mechanism was developed by Mugridge (ref. 30), _md his re-

suits show fair agreement with experiment at low frequencies. Moreover, the

analysis in section 3.5. I.1 demonstrates that incident atmospheric turbulence

can also cause broadband propeller noise.

3.5_ 1.3 Propeller noise: Gutin's theory. - Up to this point all the exam-

ples have been concerned with noise generated by the fluctuating forces exerted

on a body. However, as demonstrated in section 3.3.4. I, a body in accelera-

tive motion can generate sound even when the forces are steady. An important

example of this is the pure-tone noise generated by airplane propellers. Al-

though, as we have just seen, there are other sources of sound from propel-

lers, this mechanism is generally believed to dominate (ref. 31) for propel-

lers with a small number of blades at moderate speeds. In 1937, Gutin

(ref. 32) recognized the dipole character of this noise source and was able to
16

develop the first successful theory of propeller noise.

3.5.1.3.1 Derivation of basic equation: A propeller rotating with angular

velocity 12 in the yl-y 2 plane is shown in figure 3-19. The _-coordinate

system is fixed to the blades with its origin at the hub and the _1- and

_2-coordinates in the yl-y 2 plane.

The noise produced by this propeller can be calculated from equation

(3-23). We shall again suppose that the quadrupole terms can be neglected in

this equation. It must be pointed out, however, that this is certainly not

15Often called "propeller singing."

16Earlier attempts at formulating theories of propeller noise were made by Lynam

and Webb in 1919 (ref. 33) and by Bryan (ref. 34) in 1920.
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x2,Y2

xl,Yl

Figure3-19.- Coordinatesystemfor propeller.

always the case. In fact, it is quite likely that the quadrupole terms will dom-

inate at sufficiently high Mach numbers and blade loadings. Finally, the noise

generated by the volume displacement effects will also be neglected. With this

understanding, equation (3-23) becomes

4_c JS(t0) T=Te

where we take S(t0) to be the surface of the blades, and the retarded time Te
and the convection factor C j- _.re defined by equations (3-17) and (3-18), re-

spectively. The Mach number in equation (3-18) is defined in terms oi the

velocity V of a fixed point in the _-coordinate system by equation (3-15).
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Equation (3-13) and figure 3-19 show that for a stationary propeller

We shall (for simplicity) limit the discussion to the case where the veloc-

ity V is everywhere subsonic. Then equation (3-17) has only a single root _'e

for each value of t and the integrand in equation (3-96) need not be interpreted

as a sum of terms (see remarks following eq. (3-17)).

The analysis is restricted to the case where sources, and hence the sound

field, is periodic with angular frequency _2. This will occur, for example,

when the oncoming flow to the propeller is steady (even if it is spatially non-

uniform). It, therefore, follows from equations (3-96) and (l-A2) of appen-

dix 1.A that the amplitude Pn of the n th harmonic of the density fluctuation

is given by

_2 rj a_ fj

0) r=_e

einat dt dS(_') (3-98)

Since the integrand is evaluated at _ and the retarded time Te(_, t), it is

convenient to make these the variables of integration. But differentiating

equation (3-17) and using equations (3-9), (3-15), (3-17), and (3-18) show that

C t

d_"e

Then since _'e is a single-valued function of t, changing the variable of inte-

gration from t to Te in equation (3-89)yields
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(_, 2_/n)

• o) Te(_, o)

ein_[_'e+(r/c0 )] rj _ fj
d_- e dS(_)

2 a_ er IC*I

(3 -100)

where we have dropped the notation [ ]7.=.re with the understanding that all

quantities in the integrand are evaluated at _ and the retarded time "re.

Since r is a periodic function of _- with period 21r/_, [r]7__i. e is a

periodic function of _'e with this same period. Hence, it follows from equa-

tion (3-17)that increasing Ze by 2_/_ increases t by 2_/_. But since

the velocity is subsonic, equations (3-18) and (3-99) show that t is a mono-

tonically increasing function of _'e" Hence, increasing t by 27r/ft must also

increase T e by this amount. The limits of integration of the integral with

respect to 1-e in equation (3-100) can therefore be replaced by [_-e(_, 0),

Te(_, 0) + 2_/_]. But since the integrand is a periodic function, of re, the

value of the integral cannot be changed by a translation of both limits by a

fixed amount, and equation (3-100) becomes

x] ine a J d7 e dS(_) (3-101)

Pn 87r2c 3 x 2 e _re [C?I

o)

where, since y*(_, re) is confined to the propeller disk and ._" is in the radia-

tion field, we have replaced rj/r by its asymptotic value xj/x.
Integrating equation (3-101) by parts and using equation (3-99) show that.

since C ? > O,

x, V .in_ +(r/c 0 ¢ 5"_ _A_,5"_,-

we (to)
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But since

- 1)r=x -x-- y+O(x-
X

..p

whenever x is in the radiation field and y is confined to the propeller disk,

this equation becomes

x fj(_',.re)dS(_')dTe (3-102)

It is convenient to distinguish the front surfaces of the propeller blades,

say S,(tn) with unit normal _(1), from their back surfaces, say S2(to) with

unit normal n _ ', as shown in figure 3-20. These two sets of surfaces join

along the trailing edges of the blades and along the lines which pass through

_I - £'2 plane

(rotational plane)_

Front

surface, SI-,

I

Back I

_12) surfaceL. _

<_7 t / _--I -PrOpeller

p

L_Propeller chord

blade section

Figure 3-20. - Propeller blade surfaces.
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the fronts of each blade section at the points where the tangents of these sec-

tions are parallel to the _3-axis. The surface integral in equation (3-102) can
then be written as the sum of two integrals - one over each of these two sets of

surfaces. These integrals can be evaluated in the usual way by integrating

over the projection A of the blade surfaces in the _1-_2 plane. Then the

inner integral in equation (3-102) becomes

xjf e-in2(_'/x). _'/c 0 fj(_., Te)dS( _

x Js(tO)

= x-fIx L13'l_ e .fll) Y-'(1)

f12) ).+ in(2)----_ e d_l'd_ 2
3

(3 -103)

where _1) is the value of _3 on the front blade surface and more generally

the superscript (1) indicates that the quantity is to be evaluated at _1' _2'

_(1). In order to transform equation (3-102) into a more explicit form, we

first introduce the spherical coordinates x, 0, and _p for the observation

point _" and the cylindrical coordinates _', (p', and _3 for the source

point 5, as shown in figure 3-21. Since the vector y" denotes the location of

the source point _" relative to the fixed y'-coordinate system, it follows from

figure 3-21 that

_= { _' cos((p' + _2Te) , _' sin(_' + _2¢e) , _3 }

Jx= {xsin8 cos¢, xsin_ sin_v, xcosS}

(3-104)
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i

"A ?

_' \ I "x_ X3' y3,_3_o' +_e
Yl

Figure 3-21. - Polar coordinates for propeller.

When dealing with propellers it is customary to divide the force acting on

the blades into a thrust component fT in the _3-directi°n and a drag compo-

nent (equal to minus the torque) fD in the _o'-direction. These are related to

the components fi of f" in the fixed _'-coordinate system by

3= {-fD sin(cp' + f2Te), fD cos(¢ + _Te), -ET}

Introducing this into equation (3-103), inserting the result into equation

(3-102), and using the polar angles definea in equations (3-104_ now show th_,t

Pn
inC_223 12_/_2f

8_ c0x] 0 JA

v !COS t] - qiIl '; 5[n(c.:' "-"- , "I __ ,,. :_," ' ' • L _ij
L

where
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g_ = xp -i n_ _I) cos

°o

+_ xp in-_-__ ) cos for a = T,D (3-106)

In_2)I Co

The factors

i= 1,2

account for the variation in retarded time between the blade surfaces and the

rotational plane of the propeller. However, itis unlikely that any propeller

blade will be thick enough for the retarded-time variations between its front

and back surfaces to be important.

(3-106) becomes

[ex !
Upon neglecting this variation, equation

wherel7 _(_', 99') is the _3 coordinate of the blade chord and

f(1) f(2)

= c_ + _c_ for c_= T,D

c_ [n_l) i in_2>i

17The` (te[inJtiCm _f -,,_"c in the' l'e`gion bctwe`e`n tile I)lade`s i_; irr¢q¢,vant ._ine'L, i_

vanishc._ in this ccgi_m.

237



AEROACOUSTICS

is just the net thrust or ctrag force per unit projected area ,_ctinz on the blades

at the point (_1' [2 )"

Introducing the well-kno_n gener:Ltin_ function _ref 13;

-iZ cos /3e

sC_

Z -i)m jm(Z)e-inu _

m-- -oo

for the Bessel function Jm(Z) of the first kind and its derivative with respect

to

oo

• Z-sin fl e-iZ cos fl = 1
Z

m= _oo

(-i) m mJm(Z)e-im2

into equation (3-105) now shows that

[k n e_kn x
pll _ --

4_C_X

m= -_

eiml c-Or 2){

Af Jm(kn<' sin _)e ....... '-knC 3 cos #)/i c°s _) Fn-mT _ kn_'m FD m),(, d_..d_,n_ (3-107)

where

is the wave number of the

_ n_
k n - (3 -108)

c o

n th harmonic of the rotational frequency and

2 _ /

=-- [ (_ 7)d? for _ T,DF o - 12 eit)i_T [(_ ( . =
P 2rr a 0

3 -109)

1) h;- 31111[)[y []le " _()ilI'IuI" _:UC'ili,'/_.i!t ,,t '.ile:,)r :,c _ . t3V snilti,_,
0 " ,,_ t_i_:" !ilClcX

of summation to p= n - m, equation (3-107 can be put in the slightly more

familiar form
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iknikx Pn e n J (k _' sin _)

2 n -p'-n4_c x
A

p= -_

X -n '+ e --

co P knT

_' dU de'

(3-11o)

This equation is quite general and applies even ffthe flow approaching the pro-

peller is spatially nonuniform and every blade of the propeller is different

from every other•

3.5.1.3.2 Equation for propellers with identical blades: The case of

principal interest is when the propeller consists of B identical equally spaced

blades Let f0 (_, ¢p,_.)denote the force per unit projected area acting on a
• al

particular blade 8 individuated by setting an index s equal to I. Then since

the force distribution acting on the s = 1 blade at the time r is the same as

that which acted at the time r - (2_/P.B) (s - i) on the blade which is dis-

placed from itby the angle (2_/B) (s - I), the force distribution on the latter

blade must be

<0' - 2,7 (s - 1). r - 2n (S - 1)
a B _B

Hence,

lgwe can gtssume thqt _ is _<tual to zero when (k'. _'} does not lie in the pro-
jected area of the blade.
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B

s=l

_, _2_5_(s_ 1), T+--
B

\

2T s - 1)/
_B !

for a = T,D (3-111)

Inserting this into equation (3-109) shows that

B

Fe_=Ee-i2_(s-1)p/BF0p a,P/(' _' -2-_-_(s-1))' B

s= 1

for _ = T,D (3-112)

where

.2_/_2

F0_, P(_" _') =- _2_ J0
eiP_2T f0(_, _p,, T)dr

O '
for _ = T,D (3-113)

is the pth Fourier coefficient of the force per unit projected area acting on

the s = 1 blade. Then substituting equation (3-113) into equation (3-112),

shifting the variable of integration from _' to _' - 2_(s - 1)/B, using the

identity

B

Z e-in2=(s-l)/B =I_ forf°rn=n_mBmB

s=l

m = 0, ±1, ±2,

and noting that

= -3.- (#' - 2___(s - i)
B

yields
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PnB
iBknB

4_c_x

ei(nB -p)[_ -(_/2) ] LJ _(k ,_¢' sin _)
rib -p la:_

X eiP_' -inB( _'+f_¢_

where A 0 is the cross-sectional area of the

can be approximated fairly closely by

s=l

{3=c _'q_'cot X

where the stagger angle X is shown in figure 3-20.

3.5.1.3.3 Steady blade forces: Gutin's theory: Now consider the case

where the approaching flow is completely uniform in space and hence where

the blade forces are steady in the rotating reference frame. Then equation

(3-109) becomes

F a = fO (T') _-- I ('2_r/Q

p ot 2_ JO
e ip_2T dT : f0a(<")6p, 0 for c_ = T. D

_hus, uniy Lhe p= 0 term coatri0utes to the sum m equation (3-114),

obtain a generalization of Gutin's formula 19 (ref. 32)

& Fld W e2

19Unlike Gutin's formula, eq. (3-115) accounts for the variation in retarded time
uve L' _ilc t)Lttte.s.
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PnB
iknBB

4_c_x

-'A 0

×J B%Be sine)(f° c°cos e ---f _' d_' d(p'
_B{'

for n= 1,2,...

(3-115)

for the "rotational" noise from propellers.

In order to gain some insight into the properties of the sound field pre-

dicted by this formula, we notice that over much of the range 0 < Z < m,

where the argument of the Bessel function Jm(Z) is less than its order this

function can be approximated by the first term in its series expansion

Z m

am(Z) ~
2ram ,

3-116)

But for _' less than the tip radius R t of the propeller,

fiR t
f2r' < = Mt

c O c O

•.:i;er'_ __,It is the dp Math number For the subsonic ti:_ s_eeds to which the

analysis has been restricted, equation (3-108) shows that the arguments of the

Bessel functions in equation (3-115) are less than their orders and hence that

the _pr, roximation (3-116) can be used. In addition, the variation over A 0 of

the exponent

-inB_0'(l+9_-_ ' cos0 cot \]

', c 0 /
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will be less than 2nB//AR where AR is the aspect ratio of the blades. We

shall suppose that the aspect ratio is large enough and that the number of

blades is small enough so that the exponent is nearly zero. Then with these

approximations, equation (3-11 5) becomes

PnB iknBB / k 1 I1B i(knBx+nB [ ¢0 -(#/2 ) ]}
41r c2x (n-B) _- rlBR_ sin(O e

0 _, d_' d_p'fT (3 -117)

where

R t \ Rt) f_ d_' d_'

jao\at ) ,

n B

is the ratio of the nB th drag moment to the nB th thrust moment, or

roughly the drag-thrust ratio.

Equation (3-117) shows that the phase of the nB th harmonic PnB e

of the density fluctuation is

-inB_t

nB(_ - f_t) + knBX + Constant

Hence, its phase surface rotates with the rotational speed f_ of the propeller

while it propagates in the radial direction with the speed of sounci. "_..,lc _iaunCi

waves are therefore said to be phase locked to the propeller.
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The nB th harmonic of the average intensity is

I r
KnJ3_ nB t os 0 -

- Mt/ _' ,-._.B

InB _ 22nB+4 ]2 ___ fO d_ I d{ 2 (3-118)

7r2p0c0x2 [(nB)' IJA0\Rt /

We have already indicated that this formula does not account for the "thick-

ness noise" generated by the volume displacement effects of the blades. The

extension of Gutin's theory to include this effect was given by Deming (refs.

35 and 36) and completed by Gutin (ref. 37) in 1942. However, this noise

source is generally found to be unimportant until the tip speed approaches the

speed of sound (ref. 31).

Equation (3-118) shows that the intensity is always zero along the propel-

ler axis (6 = 0 and 0 = _). And since an/M t is usually somewhat less than

unity, it has a strong peak just behind the rotational plane of the propeller.

I
I

J.

__ (_) ,_xis .of rotation
r_

F_owdirection

I "

• I

Figure3-ZL - Pobarplot oi ,nter_stty.
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This peak rapidly becomes narrower as the number of blades increases. The

intensity is also zero at the angle cos -I. (an/Mt) to the axis in tile forward

direction. This directivity pattern is sketched in figure 3-22.

For a given tip speed the fundamental frequency c0k B = t2B increases

with increasing blade number because of a phase cancellation of the lower

harmonics of the rotational speed f2. Increasing the blade number also causes

the sound intensity to drop rapidly to zero. This is a consequence of the fact

that the higher order Bessel functions are very nearly equal to zero whenever

their argument is less than their order, which, as we have seen, is always

the case for subsonic tip speeds. Thus, we expect that thistype of noise will

not be important for jet engine fans, which usually have larger numbers of

blades.

At lower tip speeds the fundamental harmonic tends to be dominant. As

the tip speed is increased, however, the higher harmonics become progres-

sively more important.

Hubbard and Lassiter (ref. 38) compared equation (3-115) with sound

pressure measurements in the rotational plane of a two-bladed propeller (see

fig. 3-23). These and other comparisons indicate that the theory developed in

this section (extended if necessary to include thickness noise) is able to pre-

dict with reasonable accuracy the lower order harmonics (perhaps the first

I0 or so) for tip Mach numbers ranging from 1/2 to i. However, it is found

that the sound radiated by an actual propeller persists at considerably higher

frequencies than those predicted by the theory. This high-lrequency sound is

now believed to be caused by nonuniform flow entering the propeller. The

discrepancy between theory and experiment _it Mach numbers below i/2 is

also believed to result from this distortion.

3. 5. 1.3.4 Flow distortion noise: There are many cases where propel-

lers and fans must operate in much more nonuniform flows than those in which

an airpMne propeller operates. Thus, for example, a ship's propeller oper-

ates in the ship's inhomogeneous wa.ke, a jet engine fan frequently operates in

the wakes of inlet guide vanes, and helicopter blades frequently must pass

through their own wakes and operate in ground effect..M°re°ver, the noise

due to flow inhomogeneities can dominate over the rotational noise evpn _or

very small nonuniformities.
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Figure 3-23. - Propeller noise measurement of Hubbard and
Lassiter (ref. 381. Circumferential angle, 8, 90°; distance

to observation point, x, ]0 meters (30 ft).
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When the oncoming flow is nonuniform, it can no longer be assumed that

the forces acting on the blades are steady in a reference frame rotating with

the propeller. In this case, we must use the complete equation (3-114). In

order to evaluate the integrals in this equation, it is generally necessary to

know the distribution of forces on the blades. However, we can obtain a quali-

tative picture of the sound field bv assuming that all the blade forces act

through a single point with radius _ Thus, unon orientin_ th_ e -axis to
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fO actin_ on this blade

where 7 0 is the total (thrust or drag) force actin Z on the blade. Inserting
Of

this into equation (3-113) and using the result in equation (3-114) show that

PnB

cO

ikn-BB eiknBX 2
4z"c2x

p_ -oo

ei(nB-p)[ W-(rr/2)] JnB_p(knBR0 sin 8)

x Icos 0 Tp
nB -PD

knBR0 P) (3-119)

where

.2_/a

: f2 I eiPQ'r'f (r)dr for oe: T,

C_p 2=, JO a

D

is simply the Fourier coefficient of the total (thrust or drag) force acting on

the blade. This formulawas obtained by Lowson (ref. 39) by considering the

sound emission from a circular array of point sources rotating with the same
20

angular velocity about the center of the circle.

The p= 0 term corresponds to the mechanism discussed in the previous

_ection. Tile Fourier coefficients T O ,,nd D O appearing in ti_is _erm are Lne

time-averaged forces. Hence, we can think of these as the steady part of the

20"Fhc point fo roe app t'oxi mation can be j u sti fi ed rigorously in the li mi t D,'Hci'_2 the

c*.t_'n_LP,i _ _,ng c_n!,:trutl ,._il.h both the ch,,r_l _n{I span. .qim'e it i_ :t:. ,_< ;i:., !,, _.h:LL

the wavelength will be hmg compared with the chord, a better approximation ngght be
tO ccn.-;I(II2F 1;}It' [ut.'c.!O t2OllCt'IltL':ttt2£i ti,,tl_ :t :':':i::;.i iII'IC.
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blade forces with the Fourier coefficients T and D for p / 0 corresponci-
P P

ing to the fluctuating or unsteady forces. Each of these contributes a term.

or "mode", to the nB th harmonic of the sound field, whose phase is

knBX+ (rib - p)_p - nB_t + Constant

This phase surface rotates with the angular velocity

nB
--[2
nB- p

Thus, when p and nB are of the same sign, the mode rotates with an angular

velocity greater than the propeller rotational speed _. Therefore, subson-

ically rotating propellers can actually give rise to supersonically rotating

modes. However, when p and n are of opposite signs, the &ngular velocity

of the corresponding mode is less than _. This type of interaction can be

most easily visualized by considering a simple optical analogue called the

Moire effect.21 If the periodic disturbance field is represented by an array of

(say 48) radial spokes drawn on a stationary background (one spoke for each

cycle) and ifthe propeller is represented similarly (by say 46 spokes) on a

sheet of clear plastic, the interference of dark and light regions will produce

an interference pattern whenever the two patterns are overlaid. If now the

plastic sheet is turned slowly about the common center of the two arrays, the

interference pattern will be observed to spin 46/(48-46), or 23, times as fast

as the plastic sheet but in the opposite direction.

When p and n are of opposite sign, nB - p will be greater than the

order nB of the Bessel function which occurs in the steady force term of

equation (3-I19). Hence, the Bessel functions of order n_B - p will be

smaller than the Bessel function in this term. And if. as is usually the case.

me unsteady _orces ,_re s_=l,zii conlp,zrc<i with Jle stead)= iuvu._, d_c m,,d_._ 1,_

which p and n are of opposite sign will generally be negligible.

On the other hand. when p and n have the same sign, the order of the

21Thi_ e'zamote is i'_resonted in re[. ,10.
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Bessel function can be smaller than roB, In fact, the absolute magnitude of the

term with p = itB is

kn---_B - BIJ0(knBR 0 sin e)cos {? TnB I

4_c2x

whereas the absolute value of the steady force (p = 0) term is

4,'rc_'x JnB(knBR0 sin 0)T 0 os 0 - a

where a is the drag-thrust ratio. Now the relative magnitudes of these two

terms are determined principally by the relative magnitudes of the Bessel

functions and the ratio of the unsteady force to the steady force TaB/T 0.

This ratio should be roughly equal to the ratio of the magnitude of the

nB th harmonic of the disturbance field to the mean flow velocity. Hence. the

larger B is, the greater the importance of the disturbance term. However,

even when B takes on its smallest possible value of 2, the disturbance term

can be quite large. Thus, when n = I, the argument of the Bessel functions is

2M 0 sin 8, where M 0= _2R0/c 0 is the Mach number at the radius R 0. At

0 = 0, J0 = t and .I 2 = 0; and at 0 = ,T/'2 (taking M 0= 0.7), J0" J''57 and

J2 v 0. 207. Hence. even ff the magnitude of the first harmonic of the dis-

turbance is 10 percent of the mean velocity, the unsteady force term can be

one-hag as large at _ = 0° as the steady force term at 0 = 90 ° .

3.5. 1.3.5 Determination of blade forces: In order to use the results of

the last section to calculate the soun d field, it is necessary to determine the

fluctuating forces actin_j on the blades. In this section we show how (when

certain approximations are made) the results of section 3.4.2 can be applit.d

to calculate these forces. Since it is assumed in that section that linearized-

thin-airfoil theory applies, we must require that the propeller blades have

_mp.ll _amber and are a.t a small an__le of attack to the oncomin_ flow relative

to the blade. Of course, the f!uctuati,_g velocity must also oe amait. We
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J
p ,/

/ ,- Parailei to

_,Y2 i K y2 axis
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YI

/ bo'_Ro

wp

Figure 3-24. - Coordinatesystems for calculatingfluctuating bladeforces.

should also require that the blades be separated by large enough ciisu_nces so

that the mutual interference effects between their potential fields can be ne-

glected. Then each blade will act like an isolated thin airfoil. Even though

the Mach number in many applications is fairly high, we shall assume that the
22

flow is incompressible. And finally, it will be assumed that the flov,,can be

considered to be two dimensional and parallel. With these approximations the

blade forces can be calculated from the two-dimensional model illustrated in

figure 3-24,

The oncoming steady flow is parallel in the Yl-direction and varies only

-'Tho _,ffc <d _ H" c!ompr,,9:qil3i!itv '_,l"e ,!is<.,l_'_ ,_! iP, .:'haptc',: _3.
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in the Y2-direction'23 It consists of a uniform part U plus a small spa-

tially variable part. Since (as we shall see) the problem is linear, we again

need only consider (as explained in section 3.4.2) a single harmonic compo-

nent of the spatially nonuniform flow. Let w denote its amplitude and
P

'_0 cos _ its wavelength. Hence, the oncoming velocity is

2_iY2/(;_0 cos _)
U +w e (3-120)

p

In order to relate this problem to the one discussed in section 3.4.2. it is

necessary to express (3-120) in terms of the Yl-Y2 coordinate system fixed

to the airfoil (fig. 3-24) with the Yl-axis in the direction of the oncoming uni-

form flow velocity U r relative to the blade. 24

The Yl-Y2 coordinate system is rotated from the Y1-Y2 system by the

angle _ between U r and the oncoming velocity U , and ina time r

translated by a distance (U cos _,)r due to the component of the blade motion

in the Y2-direction. Hence,

Y2 = Yl sin # + Y2 cos /_ - Uor cos (3 -121)

But it can be seen from the velocity triangle in figure 3-24 that

U 0 U r

sin p cos v

Hence, the oncoming flow velocity (3-120) 15ecomes

U + w i , y2 o,I >]exp ai '_0 Ur - 7

2:>rhc mean. flow is allowed to m-_l<e an :_ngle e, with the p_'q_cndicular t<_ the, re,ra-

tional nlane of the r)ror)eller in ot'der to include the case where the onc_>nhng llow is

turned by g_li(le vanes.

24"Fhat i:% l'cl:zti:'c t(> "_n _,}_¢_'r'_', 1" _{',:¢,r} r_ f})(, hl:](l(,
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Let R 0 denote the radius corresponding to the plane of figure 3-24.

Then since the circumference 27rR0 must be equal to an integral number of

wavelengths, '_0= 2rrR0/P' U0 = 12R0' and the oncoming velocity now becomes

This velocity is in the Yl-directi°n: its components in the Yl- and Y2-
directions are

U r + Wp

But this clearly constitutes an incident disturbance of the type described by

equations (3-59) and (3-60). The results of section 3.4.2.2 therefore show

that the fluctuating liftforce per unit span is given in terms of Sears' function

by equation (3-64). Hence, introducing the present notation into this result

shows that the amplitude Fp/b of the fluctuating liftforce per unit span,

(Fp/b)e-iP_lT is given by

F

Pb = -_cP0UrWp sin p S(ap) (3-122)

where the reduced frequency cr is now
P

= p_2c

P 2U r
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This equation shows that the lift force actin4 on the blade is periodic in time

with a frequency equal to the blade rotational speed and that its pth harmonic

is completely determined by the pth spatial harmonic of the incomin; dis-

turbance field. The Fourier components of the thrust Tp and torque Dp

forces which appear in equation (3-119) are now given by

Tp = Fp sin X

D = F cos X
P P

where X is the stagger angle (fig. 3-24).

3.5. 1.3.6 Helicopter rotors: Helicopter noise has caused problems in

both the civilian and military applications of these vehicles. In civilian appb-

cations the excessive noise from helicopters limits the very application for

which they seem best suited: namely intercity transportation. In military

applications the noise provides an unnecessary early warning of the vehicle's

approach.

L_

o

No microphone

response

50

Main-rotor rotational noise

/

' f-Tail-rotor rotational noise

/ t it ,
--/ '_/'71'_,_ _"_1 ,- Main -rotor vortex noiser w v II .._'Plr"_. ,' ,approxpeaklevets,

i i _21:16 2o ! _'f_ _ _J_y'_,'Ta.-'_,v-',,,.,.
..... A __-__ L . .! ..... i
Main-rotor harmonics 2!rev 8 ]0! ]2

i

Tall-rotor harmonics II , i I i _l,I t _ I I I Jl, I I I I I II_J
10 20 50 100 200 500 1000 2000 5000 10 000

Frequency. Hz

Figure 3-25. -Externalnmsespectrum for helicopter HU-IA. Tiedownthrusi. OOOpeunds; tip_ei%_ty, 7?Ole_!?_r

"ec_nd; micrnohnne d]qfarIce _'rnm !olJrce, _'5"JOfeet. _Crnm re[. _S !
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A typical helicopter noise spectrum is shown in figure 3-25. The very

complex nature of this spectrum is a result of a large number of individual

noise sources, both mechanical and aerodynamic. The principal aerodynamic

noise sources are indicated in the figure.

Since a helicopter rotor is a special case of a propeller, its sound field

should be described reasonably well by equation (3-115). However, it may

now be necessary to extend the equation to include a "coning force, " which

acts in the radial direction. This force can be of the same order as the drag

force, which is typically one-tenth of the thrust. In fact, it was found experi-

mentally (ref. 41) that the lowest order harmonic is predicted fairly well by

Gutin's theory. However, the sound intensity falls off much more slowly with

increasing harmonic number than predicted by the theory. The obvious ex-

planation of this is that there exist large fluctuating forces acting on heli-

copter blades which do not act on propellers. This initially caused some diffi-

culty since this high harmonic content was observed under certain conditions

of hover where it was felt that the helicopter rotor should behave as a propel-

ler. But it was eventually shown by Simons (ref. 42) that significant load var-

iations exist even in hover. It is, therefore, necessary to use the full equa-

tion (3-114) or perhaps the point force approximation (3-119). The principal

difficulty in applying either of these equations is in the determination of the

unsteady loading harmonics Tp and Dp, which can vary widely with operating

conditions. Thus, the blade loading can vary from the impulsive-type force

associated with "blade slap" to the nearly periodic force cu.used by tile cyclic

incidence variations of the blades in level flight (which must be used to com-

pensate for the differences in relative blade speed during forward and back-

ward motion). Blade slap is the name given to the sharp ban__in< or sla_)piz::

noise heard under some operating conditions (such as low-power descent). It

occurs.at the blade passing frequency and, because of its impulsive nature, is

very rich in higher harmonics. It is the result of a particularly severe inter-

action of the blades with the shed tip vortices.

By using the blade loading harmonics measured by Scheiman (ref. 43),

Schlegel, King, and Mull (ref. 44) calculated the sounds produced by a rotor

durinz hovpr _nd compared *hem with ex_erim.__nt 'V_ir _':!t_ _r _ o,ho",'_

in figure 3-26 which is taken from reference 45. Also shown in this figure is
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E
I.I

T Experimental measurements (ref. 44J
O Calculated (ref, 441

& Calculated(ref.45)
I-I Gutin'stheory

o $ I

[]

o

I I I I I
1 Z 3 4 5

Harmonic of blade passing frequency

Figure 3-26. - Comparison of rotor noise theory with experiment.
tFromref. 45.)

a calculation based on Gutin's theory and a calculation carried out by Lowson

and Ollerhead (ref. 45) using a larger number of unsteady loading harmonics.

3, 5. i. 3.7 Fan noise: Since the rotor of an axial-flow fan or compressor

is simply a propeller in a duct, it cam be argued that the theory developed in

section 3, 5. I. 3. I ought to be able to predict the essential features of the noise

from such fans, at least at suificiently high frequencies. As a consequence of

this, this model has been adopted by Morley (ref. 46), Barry and More

(ref. 47). Lowson (ref. 39) and many others to analyze various aspects of

Lul ::oise. The main conceptual difference appe:_rs to be due to d_e mltoff

phenomenon, which we discuss in chapter 4. Thus, as we shall see. the

modes generated by a fan in a very long (i.e. , infinite)duct will simply not

_rooa_ate until the freouency is above a certain "cutoff" frequency for that

mode. However, the corresponding modes generated by a propeller in free

space merely have small amplitudes in the radiation field due to almost com-

plete cancellations of the sound emitted from various positions in the propeller

_:Ask. ]_hese L'-ulceik_tions.u-,:not quit_ compie[e because-,[ s]i4h[ <_rL<t[nn:_

in retarded time.- This results in a gradual cutoff with frequency instead of
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the sharp cutoff which occurs in ducts. The cffect of the duct on the sound

field is assessed in section 4.3. 5. It can be seen from the results of that sec-

tion that the free-space theory developed in this chapter becomes more accur-

ate with increasing frequency.

3.5.2 Flows With Sound Field Determined by Green's Function Equations

Tailored to the Geometry

In this section, rather than use the free-space Green's function (as was

done in the last section), we now describe the sound emission from unsteady

flows in terms of Green's functions specifically tailored to the geometry of the

solid boundaries. Itis therefore necessary to return to equation (3-6). Since

only stationary boundaries 25 are treated in this section, the last term in this

equation can be omitted to obtain

p, = 1 __820 Tij dy'd_" +--1 __SOf. dS(_d_"
2 Co 1

c O _Yi_Yj _Yi

(3-123)

3.5.2. i Sound generated near an infinite plane surface. - Even though

most aeroacoustic calculations which involve solid boundaries attribute the

sound to the dipole surface term, we have seen that the quadrupole term may

actually dominate in certain cases. This be_:omes particularly apparent when

the unsteady flow is bounded by a perfectly rigid infinite plane (shown sche-

matically in fig. 3-27). In this case, it is reasonable to use the Green's

function given by equation (1-65) since its normal derivative vanishes on the

0ounciary. thus, illsertill_ equation (1-85) _.nto equation _3-123) anti ,_ot_ng tilat

r'= r when Y2 = 0 show that

25The treatm_mt of n4oving: b,mndaries hv this am)roach i_ taken ,_ ;n oh,-_ntor a
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x2.Y2

._'-_ Unsteadyflow

Figure3-27. - Infinite-planeboundary.

xl,Y1

2G0(r) Tij d7 d-r + I/

_Yi_Yj c O

_2G0(r') Tij dy'dT

_Yi_Yj

T

o G°'r'f Y  dyidy3d "(3 -124)

where we have used the notation (i-38), and the repeated index c can assume

only the odd values 1 and 3 - corresponding to the coordinates lying in the sur-

face. The second term in this equation can be transformed into an integral

over _he region Y2 _ 0 interior to the solid surface by changi_g the v:_riab!e

of integratioafrom Y2 to -Y2" This term then becomes

l/T/:.c20 _0 _-2G----0(r)cYi_ YJ T't'I] d_" dT

where
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T i
ij = -1)I+]Tij(Yl' -Y2' Y3' _')

is the "mirror image" reflection of Tij in the Y2 = 0 plane.
It is convenient to introduce an extended quadrupole distribution T..

1]

which is defined on all space in such a way that it is equal to Tij for Y2 > 0

and to its mirror image T:j for Y2 < 0. Then the first two integrals in

equation (3-124) can be combined into a single integral over all space (where

the omission of the limits indicates that the integration is to be over _11 space)

to obtain

CO J 8Yi°YJ

T

Co 0

c2G0(r), f_ dy I dy 3 d7

eyff

Since G O depends on _" and y" only through r, the derivatives with respect

to Yi can be changed to derivatives with respect to xi and the integration

over the delta function can be carried out to obtain

This equ_tio_ was first derived by Powell (eef. 48).

Since the normal vector n is now in the Y2-direction, itfollows from

equations (2-2) and (3-4) that

_v 2 8v _v
f = e2(_= _ -- + ----_= _ --O"

(_Y_ _Y2 _Y2
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Thus, the strength of the surface dipole is equal to the fluctuating viscous

stress. Hence, when the flow is inviscid, the equation becomes 26

P' 4rrc 2 _xiax j Tij c0/

This shows that for an inviscid flow, the net effect of an infinite-plane rigid

boundary can be accounted for by introducing an image distribution of volume

quadrupole sources obtained by reflecting in the plane surface the volume

quadrupole distribution Tij. Thus, for a given flow the solid boundary does

little more than reflect the sound. Of course, it must be kept in mind that the

presence of solid boundaries always has a strong effect on the unsteady flow

which generates the sound.

In any real flow where viscosity is present, the fluctuating viscous shear

stress will introduce a tangential surface dipole. However, even though the

dipole source is a more efficient sound producer _tt low Mach numbers, the

fluctuating part of the wall shear stress, being essentially a viscous quantity,

ought to be quite small compared with the fluctuating Reynolds stress term at

the high Reynolds number where aerodynamic sound emission usually becomes

significant (especially when the Mach number is sufficiently high).

An interesting experiment which tends to verify this conclusion was co:_-

ducted by Olsen, Miles, and Dorseh (ref. 49). It consisted of measuring the

sound field which is produced when a turbulent jet impinges on a very large

plate. It was found that there was a very large increase in the acoustic power

over that radiated by the jet itself - indicating that most of the sounci was

probably caused by the presence of the plate. However. the emitted sound in-

tensity always varied as the eighth power of the velocity (which is characteris-

tic of a volume quadrupole) and not as the sLxth power 27 (which is characteris-

tic of a dipole) - indicating that the surface dipole term was small. The noise

9GC_mF>urc-_. '_his with eo., {9-11),, ,jbttzined for an unsteadv flow with no ._o!i(! b,:unq-

aries present.

27Sec _ection 3. 3. 4. Z 2.
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emitted from the boundary layers on large surfaces is usually found to be

fairly small unless the velocities are extremely large (which is consistent

with the relatively low efficiency of the quadrupole source). However, large

surfaces inserted into jets often exhibit a ratio of turbulent pressure fluctua-

tions to dynamic pressure which is an order of magnitude larger than what it

would be in a turbulent boundary layer.

3.5.2.2 Sound generated near finite surfaces. - Up to now we have con-

sidered the sound generated by unsteady flows near surfaces whose dimensions

are either large or small compared to a typical wavelength. However, prac-

tical surfaces at practical air speeds frequently generate significant sound at

wavelengths which are neither small nor large compared to their dimensions.

3.5.2.2.1 General equations: Fortunately (as pointed out by Doak

(ref. 50)), the ideas developed in the last section can be extended to fixed

boundaries of arbitrary size and shape simply by using (in eq. (3-123)) the

Green's function whose normal derivative vanished at the boundary. Then

since

8G = n. --=SG 0

an J _yj

on.the surface S

Substituting equation (3-4) into (3-123) shows that

$7p' : _ _2G

c_ 8Yi_Yj
fTf 8J dS(9-- Tij dy'dr + c_0 Oyj eijni

And if, as before, it is assumed that the sound generated by the fluctuating

viscous stress is negligible at the Reynolds numbers of interest, this equa-

tion becomes

770'- l _2G dy'dr

Co _ _ yic----y] T[j

(3-125)
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It is frequently simpler to deal with the Fourier transform of this equa-

tion than with the equation itself. Thus, let A denote the Fourier transform

of p' and T t. denote the Fourier transform of T... Then since equation
11 11

(1-69) shows that G depends on t and 1- only through the combination t- %

the last entry in table 1-1 (appendix 1. A) shows that the Fourier transform of

equation (3-125) is

2G t df= a Yi_ Yj Tij
c o

(3 -126)

where, as shown by equation (I-67), G

I. 3. i. 3) to the Helmholtz equation

is an outgoing-wave solution (section

(V 2 + k2)Gc0(_) = -6_ - y-') where k = ¢o

c O

Equation (3-125) can best be interpreted by considering a specific application.

3.5.2.2.2 Edge noise: the half-plane problem: Perhaps the simplest

geometry (after the infinite plane) to which equation (3-126) can be applied is

the semi-infinite plane shown in figure 3-28. The analysis of this problem

was carried out by Ffowcs Williams and Hail (re/. 51).

The outgoing-wave Green's function whose normal derivative vanishes on

the half-plane Yl > 0, Y2 = 0 is somewhat complex. But (McDonald,

ref. 52) in the radiation field it assumes the relative!v simple form

I _-e_kr eikr' 1
G w _ _:, L-_-- F(d) +--r' F(d' (3-127)

..J

where, as usual,

r: I _" - _"t
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xz,Yz_.

I //I_"-.

Observation

/ I
r SOurce / i _
I point. / _r_

-'= Xl,Yl

0

Figure3-_, - Semi-infiniteplane.

is the distance between the source point and the observation point and

r' = [i'-gJ with ? : {yl,-y2, Y3}

denotes the distance between the image point (source point reflected in

Yl-Y3 plane) and the observation point. F(d) denotes what is essentially the

complex Fresnei integral

and

F(d) = I + e -i_/4 fJ0d
- eiu2 du (3-128)

d = (2kr 0 sin e) 1/2 cos 1 (_ _ _;0) }
2

d' (_,,r 0 Jin j_ 1'/2 1

(3 -i29}
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where

_1 2ro = + Y2

Y2
q_O = tan-1 --

Yl

are the cylindrical coordinates of the source point shown in fig'ure 3-29o It is

important to point out that this Green's function has a "potential-field singu-

larity" at the edge. This means that the acoustic field behaves like a potential

flow in the vicinity of the edge.

Notice the close resemblance between equation (3-127) and the infinite-

plane Green's function (see eqs. (1-65) and (1-69)). The principal difference

is that each term is now weighted by a Fresnel integral which varies (roughly)

between 0 and 1. Hence, any enhancement of the sound field over that which

results from an infinite flat plate must occur through derivatives of the

Fresnel integral (or more specifically derivatives of d and d').

Very little sound will reach an observer ff the source is far from the edge

and on the opposite side of the plate. When the source and observer are on the

same side and the source is far from the edge, the plate will act like an in-

finite plane. We therefore anticipate that any substantial amplification of the

IY2 _SVr

Figure3-29.- Cylindricalcoordinatesforsource.
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sound field which results from the presence of the plate will occur when the

source is near the edge. Thus, we consider only the case where

2kr 0 << i

that is, where the distance between the source point and the leading edge is

very small compared to a wavelength. Then since

_0 d e -iu2
du = d + O(d 3)

for small d, equation (3-127) becomes

G_-
eikrIl+e-i_/4(2krosine)l/24TrrL2-_ c°s 2(? -(PO)I

F

e ikr' I1 e-irr/4
+ _ _ + _(2kr 0

4_r' _2
sin0) 1/2 cos I-_2 _a011 + O Ikr0) 3/21

And. since

kr' _ kr + 2kr 0 sin _o0 sin cO sin el

in the far field, we can neglect the difference between kr and kr' to obtain

V -1

i e ikr ll 2e-i"r/4 '2 1 1 _o]

Gw =--4rrr _ + --_/_ (2kr 0 sin e)l cos 2-s°0 cos -2 -J + O(kr0)

Inserting this into equation (3-126) shows that ior the sound generated ,lear t.c,

ectge
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2w2 e-i_/4 sin 1/2 _ cos 1

4,vc 4 _/_ 2

;2 2ro_ I/2

eikrTt . L\V/ cos_

r P(_

uo

(3-130)

edge where the integral is now evaluated over a region _0 for which

2kr 0 << I, and the repeated Greek indices are used to indicate that the sum is

only over 1 and 2 (since the term in square brackets is independent of y3).

Now suppose that the Reynolds stress approximation (2-7) can be used

for T... Then introducing the radial and circumferential velocities v and
i] r

v by (fig. 3-29)

vI= vr cos _0 - v sin ¢0

v2= vr sin_00+vo cos(P0

and carrying out the differentiations in terms of the cylindrical coordinates

r 0 and _90 show that

2a_2p0 e-i"r/4-sinI/2 _ cos _i_9

× v v cos- ¢0 2(VrV )L sin lq) --d_

(2kr0)3/2 2 2 r

(3 -131;
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where the superscript t denotes the Fourier transform. This formula is the

basic result obtained in the Ffowcs Williams - Hall paper. It is instructive to

compare it with the corresponding result for the case where there is no solid

boundary present, namely,

+ (V2r)t Cos(cp-_o0)+ 2(VrV¢)tcos(_p-_p0 ) sin(_-¢0)

+ (Similar terms involving the remaining Reynolds stresses)}

ikr
e___

r

The most important difference is due to the occurrence of the large factor

(2kr0)-3/2 in equation (3-131). This can result in a significant increase in the

far-field pressure over that which would occur if no edge were present. It

therefore shows that a solid surface can act to scatter the basically nonpropa-

gating near-field flow fluctuations into a propagating sound field. Thus. the

inefficiency of a compact quadrupole source is the result of the phase cancella-

tions which occur between its component monopoles. But inserting a surface

into its near field can reduce this cancellation and thereby increase the effi-

ciency of the source.
2 2

Only the Reynolds stresses P0Vr , P0Vp, and P0VrVtp produce sound

fields which are augmented over the unbounded field by the factor (2kr0)-3/2.

The Reynolds stresses P0VrV3 and P0V v3, which are omitted from equation
(3-131), are increased over the unbounded flow values by a factor of only

(2kr0)-l/2, while the sound field produced by the Reynolds stress pv__' shows

no increase.

Consider the case where the sound is generated by a turbulent flaw. In

order to estimate the sound field, we assume (as Lighthill did in his original

papers on aerodynamic noise) that the flow is divided into a number of regions
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which are much smaller than an acoustic wavelength. The turbulence within

each of these regions is regarded as completely correlated, and the turbulence

in any two different regions as completely uncorrelated. Then the total inten-

sity of the sound field can be found simply by calculating the sound intensity

from each of these volumes and adding the results. Thus, applying equation

(3-131) to a single correlation volume V 0 and supposing that v and v do
not vary over this region show that c_ r

A 2W2po eikr e-M/4 sin 1/2 0 cos 1 _o

4_c 4 r _ 2

X

cos 1 _0
2

(2kr0)3/2
ld_+ 2(VrV O

',/V 0

1

sin 2 _0

(2kro) 3/2

Upon approximating the integrals in this equation by

<coo ....
COS --

2

4<

<,_o >
sin --

2

.(2k< r 0 ::)-3/2 VO

where i_)0 ) and ir 0/

eddy, " we find

denote the polar coordinates of the center of "the
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_ 2W2pO e i(kr-_/4) sin1/2 12 _ (3-132)
A 4rrc 4 r(k<r0)) 3/2 8 cos AV 0

where

(2 2) t 1 2(VrV p)tA--- v -v r cos-(_o 0) + sinl_0 )
2 2

is roughly equal to (v 2 . Hence, the average far-field intensity from each

correlation volume is

-- _ ¢QPP0V4 V2 sin 8 cos 2 1 (p

IV0 2 3c2<r0 }3 r 2 2'

(3-133)

28

where _Qp denotes a peak or characteristic frequency.

Since the total turbulence volume is equal to V 0 times the number of

correlation volumes, the sound intensity per unit volume of turbulence is

(7
--I_ _QpP0 _4 V0 sin 8 cos 2-1 _Q

2rr3 C2{ r0 ) 3r2 2

The factor cos 2 1 _ causes the sound intensity to go to zero in the piatm oi
2

the edge. The characteristic directivity pattern of this sound field in the

plane perpendicular to the edge (8 = ,T/2) is shown in figure 3-30. In this

28In order to obtain eq. (3-133}, it was assumed that the frequency could be re-

placed bv its oeak value in eq. (3-132). The results of section 1. 7.3. 2. 1 together with

eq. (2-5) were then applied to calculate the _ntensit/,, an_l the L',__'u_t:_o;.._pc'ndi:< i..':
(seetinn 1. A 2) were used to relate the product of the Fourier transforms of the

squared velocities to their time averages.

268



EFFECT OF SOLID BOUNDARIES

imo

dB

Figure3-30.- Directivltypatternofedgenoiseinplaneperpendicularto
edge.(Zerodecibelsis peaklevelat 8 - _/2 and_ - 0u.)

figure the intensity has been normalized, with its maximum value

-- cot;PoV4V 0
Imm x = " (3 -134)

2_3c2< r O) 3r2

This result can be used to obtain similarity estimates of the sound field.

Thus. let i denote a typical turbulence correlation length. It is reasonable

to suppose, at least for the eddies downstream of the edge, that I scales with

<r0} (i.e., I _ (r0}). Let U denote the mean-flow velocity and suppose that

the turbulence velocity u' is related to U by u' _ c_U, Then since the cor-

relation volume is roughly 13 and Wp _U/l, equation (3-134) implies

_ POU5_ 4

Ima x - (3-135)

2_3c2Lr 2
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U 5. (Recall that the inten-

for turbulence near a small

Thus, in this case, the sound intensity varies as

sity varies as U 8 for free turbulence and as U 6

solid object. )

It is instructive to compare the sound power output predicted by this equa-

tion with that which would be produced if there were no edge present. Now it

was shown in section 3.5.2.1 that sound output produced in the vicinity of an

infinite plate ought to be roughly the same as that produced by free turbulence

(provided, of course, that the turbulence itself is the same in both cases).

Thus, the results of section 2.5.1 will be used to estimate the power output

from the turbulence far from the edge. To this end, we notice that equations

(2-44) and (2-42) show

u' ot2U 2

r_ l

where c__ u'/U is roughly the proportionality constant between the mean

velocity U and the fluctuating.velocity u'. Hence, upon neglecting direc-

tional effects, equation (2-40) shows that the sound intensity from free tur-

bulence is roughly

_ po_4U 8
Ifree

16_2c_r2/

We shall use this expression together with equation (3-135) to estimate the

size of plate for which the edge effects will be negligible. Thus, it follows

from these two equations that the edge regions will have equivalent sound-

_enerating ability to the remainder of the plate when

(;01Imax(2Ledge) _ 16 Ledge - O(i)

- rr Lplat e
IfreeLplate
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where Ledg e is the length of the region where the edge amplifies the sound

and Lplat e is the length of the total plate. But the size of the edge region is
determined by the inequality

ro<< 1 _ x
2k 4rr

Hence, if the plate is more than (4/#2)M -3 wavelengths long (where M is the

mean-flow Mach number), the edge noise should be negligible. Of course,

these estimates are highly approximate and could easily be off by an order of

magnitude or so. It should also be noted that they are based on the assumption

that the turbulence in the vicinity of the edge is the same as it is at the center

of the plate. However, pressure measurements in the vicinity of a trailing

edge show that the edge has a strong effect on the flow.

Recall that the Green's function on which this analysis is based has a

potential-flow singularity at the edge. Hence, the acoustic velocity is not

finite there. If one wishes to require that the velocity remain finite at the

edge, there are two points of view which can be adopted. The first of these is

to extend Lighthill's equation to include the viscous effects in the propagation

terms. The part of this problem associated with the actual propagation would

then be similar to certain analyses performed by Abblas (reds. 53 and 54). who

solved the linearized Navier-Stokes equations with viscous effects included.

He showed that in the absence of a mean flow, small vLscosity removed the

singularity in the velocity at the edge without appreciably affecting the far-

field pressure. But, whenever there is a nonnegligible mean flow. it may not

be legitimate to lirtearize the Navier-Stokes equations since the ,msteadv f[o-.v

causing the sound field or even the sound field itself can cause a shedding of

vortices from the edge.

Another approach which can be taken is to solve the uniformly movina-

_::_.._li__n_ ;vttv,__ equatiun subject to a Kutta-Jom¢owski condition at the e(t_ge.

However, this cannot be done without giving up some property of the sound

field, such as its continuity or its finiteness. Jones (ref. 55) imposed the

Kutta condition by discarding the requirement of continuity He _t-_-q!ytn!i_h,,(!
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this by introducing a vortex sheet extending from the edge. Of course, such a

vortex sheet would only be reasonable for a trailing edge embeddea in a mean

flow. Jones concludes from his analysis that, when the sound field is convec-

ted by the mean flow, "the imposition or otherwise of the Kutta-Joukowski

conditions does not have much influence on the scattered field away from the

plane of the diffracting plane; when the source is near the edge the field has

the same directionality and the same order of magnitude. On the other hand,

near the wake, the Kutta-Joukowski condition produces a much stronger field

than elsewhere even when the source is not near the edge. "

Since a vortex sheet cannot occur at a leading edge, it appears that the

imposition of a potential-flow singularity is most appropriate in this case,

whereas the imposition of the Kutta condition at a trailing edge leads to nearly

the same conclusions as the imposition of a potential-flow singularity.

3.5.2.2.3 Lip noise: the semi-infinite cylinder problem: An analysis

similar to the one described in the previous section was used by Leppington

(ref. 56) to estimate the sound emitted from turbulence in the vicinity of the

exit plane of an open tube (such as shown in fig. 3-31). The analysis proceeds

in the same manner as that of Ffowcs ¢Vi!tian_s and Hall except that the

Green's function appropriate to an open-ended tube is used. This function is

obtained by applying the reciprocity principle to the solution of an appropriate

scattering problem, which can be solved by the Wiener-Hopf technique

(ref. 5,'). Leppington's analysis involves the additional assumption that the

wavelength of the sound is long compared with the pipe radius. The conclusiott

is then that the sound power emitted by the turbulence now varies as the veloc-

•_Turbulent

eddy

Figure 3-31. - Semi-infinite cylinder.
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Itv _o d_e s_xdt power xs found by Curie rather than to hle fifthpower as found

by Ffowcs Williams and Hall.

On the basis of these analyses, it might be anticipated that there is an

additional source of noise in a jet due to the nozzle lip. The results indicate

that this sound should vary with the velocity to the fifth or sixth power and.

because of the cos2(_/2) directional dependence found in the last section.

should be concentrated in the upstream direction. Finally, since this noise

varies with a lower power of the jet velocity than ordinary jet noise, it ought

to be more important at low velocities. In fact, it has been argued (ref. 58)

that the discrepancies between jet noise measurements upstream of the nozzle

and the noise predicted by Lighthill's theory can be attributed to lip noise and

that the double-peaked spectra observed at the upstream angles are further

verification of this idea. But, the double-peaked spectrum 29 can also be

attributed to the internal noise transmitted through the pipe walls. In fact,

recent careful experiments by Olsen and Friedman (ref. 59) indicate that there

is no significant noise from the nozzle lip down to jet velocities of 400 ft/sec

(122.5 m/see). In these experiments, the internal noise was kept low anc' me

pipe wall was well insulated. No double-peaked spectrum seems to have been

observed. In addition, the r_diated power at these upstream angles varied

with the velocity to the eighth power and not the fifth or sixth. However, it is

certainly possible that this lip noise will eventually be detected in experiments

conducted at lower velocities.

-"'a_:'_" cil_ _}ii)c, '_,hc'cc "he i,_t n,q.:,' ;': b_w,Pct.
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APPENDIX 3.A

REDUCTION OF VOLUME DISPLACEMENT TERM TO DIPOLE

AND QUADRUPOLE TERMS

We wish to show that the last integral in equation (3-8) can be reduced to

a dipole term and a quadrupole term whenever

8Vi- 0 (3-AI)

8Yi

To this end. notice that, for any function f(rl 7) of r and _ which vanishes

outside the interval -T < r < T. equations (3-A1) and (3,7) imply

8 V[__f(r,_-) _f(r,_-_ + 8 _f(r,T)

'L; J 07 0xi

- _ ajf(r, 1") -
0xj 0x. 0x.1 ]

ViVjf(r , 7) (3-A2)

where, in view of the cha.in rule and equation (3-9),

_V. 8Vj
V. ---_ = +-- =

aj 1

_:Yi \_v/_ c'Yi \or�7 7Y Y

is the acceleration of a fixed point in the {-coordinate system. But applying

Leibniz's rule (eq. (1-48)) to the region _'c interior to S and using equation

(3-10) stiow (L".pO_ :lOtil_ that the direcLlott ot tile outw_rd-cu'_va norm._i

changes sign)
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d

0 _T Vi--_x. f dy" dr

(T) i

= ___ Vi 8 f dy'dv -

Dr _x i
(T) r)

VjnjV i ?-_fdS UT
?x.

1

Hence, the divergence theorem implies that

fZniVi 8,_f dS dT
ar

T)

--- _ vj +vii
_x i

- (T)

+ -- V i
CT

d_'dT

And as a result it follows from equations (3-A2) and (3-10) that

niV _-#-fdS dT= -
F,7 i,x. T

T) J
Zc(T air(r, T)dVdT

_xi?x j

f_ ViVjf(r' 7)d_rdT
c(T)
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APPENDIX 3.B

SOLUTION TO TWO-DIMENSIONAL UNSTEADY-AIRFOIL PROBLEM

Before proceeding with the solution to this problem, it is convenient to

assume that the wave number k I (which enters the analysis through the bound-

ary condition (3-61)) has a small positive imaginary part. Itcan be shown that

this is equivalent to assuming that there are small amounts of linear damping

in the fluid. Once the solution has been obtained, the imaginary part of k 1

will again be put equal to zero.

Instead of solving equation (3-50) for the velocity potential, itis more

convenient in this case to work directly with the velocity (3-62) which satisfies

equations (3-46) and (3-48). In the present case these equations reduce to

= 0 (3-BI)

0Ul au2= 0

_Y2 aYl

(3 -B2)

which must be solved for u I and u 2 subject to the boundary conditions (3-42)

and (3-61). Since the time enters the problem only through the multiplica-

-iklUoo -,
tive factor e which appears in the boundary condition (3-61), the

solution must be of the form

-klU_r l

u 1 = -a2Vl(Y 1, Y2 )e

-iklUoo : L
u2 = -a2V2(Yl, Y2 )e J

(3-B3)

where V 1 and V 2 are two complex functions which, in view of equations

(3-B1) anti (3-B2), satisfy the relations

9-7-,



_V 1 5V 2

_Yl _Y2

OV 1 _V 2

_Y2 SYl

=0

=0
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(3 -B4)

everywhere except possibly along the line Y2 = 0, Yl _ -(c/2).

just the Cauchy-Riemann equations (ref. 60) for the functions

Hence,

But these are

V 1 and -V 2.

W= V 1 -iV 2 (3-B5)

is an analytic function of the complex variable Z = Yl + iY2 (except along the

line Y2 = 0, Yl > -(c/2)). Similarly, taking the complex conjugate of equa-

tions (3-B4) shows that

W= V_-iV; (3-B6)

is also an analytic function of Z.

The boundary condition (3-42) shows that

And since the Cauchy integral

W and W vanish as Z - _.

1 a(y:)

27r---i y 1 - Z dyl

(c/2)

is an analytic function of Z ever?".vhere except ,t'on_ the line v, = 0.

Yl > -(c/2), which vanishes as Z - _ (refs. 61 and 62). we seeka solution to

the problem in the form
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p_

w- 1 / _(Yl)
- 2_---i Yl - Z dyl (3-B7

J_(cj2)

_oo

.... dy I (3-B8

2rri 1(c/2 Yl - Z)

Then V 1 and V 2 will satisfy equations (3-B4)and vanish at m.

It remains to choose the functions i2 and _ so that the boundary condi-

tions along the plate are satisfied. But inserting equation (3-B3) into the

boundary condition (3-61) shows that

V 2 eiklyl for Y2 0; < Yl \ (3-B9)
2 2

and, since this condition must hold on both sides of the plate, that

/ c

V 2+ - V 2= 0 for Y2 = 0; _c2 <yl " 2 (3-B10)

V_ + V 2: 2eiklyl for Y2 = 0; _c< Yl <c (3-BII)
2 2

where, for any function f(Z), f+(yl ) denotes the limits

lim f(Yl + i_) for _ :-: 0
_-0

as f approaches the real axis from above/below.

Since the normal velocity u2 must be continuous across the trailing
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vortex sheet (which lies along the line Y2 = 0, Yl , (c//2)), it follows that con-

dition (3-B10) also holds for Yl > (c/2). Hence,

v_- v_= 0 for Yl > --_ (3-m2)
2

But applying the Plemelj formulas (refs. 61 and 62) to equations (3-B7) and

(3-B8) shows that for Yl > -(c/2)

w + - w- = a(y 1) (3 -B13)

#+ - _-= _(yl) (3-B14)

OO

w + + w- = ¢'----_ a(y[)

7ri (c/2) y_ - Yl

dy_ (3-B15)

_r++_-_ #'% (Yl)

_i ) Yl - Yl

dyl (3-B16)

where _" denotes the Cauchy principal value of the integral. It now follows

from equations (3-B5), (3-B6), (3-B13), and (3-B14) and by adding the complex

conjugate of equation (3-B16) to equation (3-B15) that

c_O+_2" v_ = _1 _ v'e(Y'l)-dyl ra-BI:)
qJ-(e/2) " 1 Yl
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since equations (3-B5), (3-BIO), (3-B12), and (3-B13) imply 30

_(h)=_ -v_ _orYl> _c
2

(3-B 18)

Then inserting equation (3-B17) into equation (3-Bll) shows that

eiklYl 1 t_" (Yl) c c
=-- ---- dy I for --<yl <-

2y 'c/2) Yl - Yl 2 2

(3 -B19)

Since the pressure must be continuous across the wake (i. e., p+ - p- = 0),

the Yl-component of the momentum equation (3-45) shows that

_'r ay I 2

Inserting equations (3-B3) and (3-B18) into this relation shows that

-iklU _ .Q + U_ d_____= 0 for Yl > c
dy I 2

But this equation can be integrated from c/2

i2(y 1) = _ 0 eikl [y 1-(c/2)]

to Yl to obtain

for YI" c (3-B20)
2

where

30En. (3-BI#) _hows that we can interpret 2(Yl) as the _trength of the vortex

sheet at Yl.
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Kelvin's circulation theorem (ref. 63)

dr=0
dT

states that the time rate of change of circulation around any closed curve (with

element of length d/_ is zero. Applying this to the contour in figure 3-32

shows that

(u + - u-)dy 1 = 0

dT C/2)

Hence, it follows from equations (3-B3) add (3-B18) that

_ dY 1
f_ --0

c/2)

Inserting equation (3-B20) into this relation and carrying out the integration

yields

c/2_20 = ik 1 _(Yl)dYl (3-B21)

J-(c/2)

while inserting equation (3-B20) into equation (3-B19) yields

Y2

-c12 d2

Figure 3-32. - Contour for application of Kelvin's theorem,
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e - _ Yl - Yl 2;1 Yl - Yl

(c/2) Jc/2

for _c < Yl < c (3-B22)
2 2.

This is a singular integral equation of a well-known type which can be

solved for _2 in closed form. In order to satisfy the Kutta condition, we must

require that this solution remain bounded at Yl = c/2. The solution to equa-

tion (3-B22) which satisfies this condition is (see ref. 62, p. 428 for a full

discussion)

C_y

a(_l)=_2_ __2
" _c- y_ ei'-'k3Y3

_-(c/21 YlYl-Yl

dye.

f--_ I - YI'2rr Y_ Yl Yl - Yl

J
-(c/2)

dy' l' dy i

_J

for c / c
---. yl < -

2 2
(3-B23)
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In the last integral the order of integration can be interchanged and the inte-

gral with respect to y_ written as

c/2 _
_ 2 +_Y'I dy'1

y_ (Yl - yl)(y _' - y_)

,¢-(c/2)

f c�2

C

9P____ 2 +_ y_ _dYi_

7r Yl Yl - y

(c/2) ,¢

,_ c/2

c/2)

Yl Yl - y{'

But since (see appendix of ref. 65)

c/2

#_// 2 +_Yl _dYi_

- 2j Y'z Yl - _

Irr

1

for

(3 -B24)

this becomes
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0

c/2

2 1 Yl dy i

y_ (Y'I - Yl)(Yl' - Yl)

(c/2)

C

'c
for y_, > c and ]Yll < c

2 2

Equation (3-B23) can therefore be written as

V
c y c •

_2(Yl) 2 2_" t...... ._"K J(c/ 2+y_- e ikly_
" Yl Yl - Yl

2)

dYi

_0 eikl[Y_- (C/2)]

-T Yl -Yl

c

V71
dY i

J

C _- Cfor - - . v z
2 -1 2

The constant, fa 0 can now be determined by substituting this equation into

equation (3-B21). Thus. integrating both .-:ides of equation /3-B25) shows after

changing the orders of integration and using equation (3-B24)
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f fl(Yl)dY 1 = -2

J-(c/2)

r-

'1c/2

2+ Yl

yl
_.(c/2)

iklY _
-- e dy_

EFFECT OF SOLID BOUNDARIES

_0

2

0

- C dYl

2
/2

But by using the formulas given in reference 64, these integrals can be eval-

uated in terms of Bessel functions to obtain

fl(Yl)dY 1 = -2Tr 0(Crl) + iJl(_l ) c

J-(c/2) 2

where Jn and H (1) for

first kind and

n=0,1

-ial[H_l)(_l)- iH_l)(_lt 2 - (3 -B26)

denote the Bessel and Hankel functions of the

klC

el= 2

is the reduced frequency.

Substituting equation (3-B26) into equation (3-B21) now shows that
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lfflF

_0 = ikl _(Yl)dYl = - (3-B27)

d-(c/2) H_I)(_ 1) - iH(01)(_l)

With f_0 determined by this equation, equation (3-B25) can be used to calcu-

late f_(yl) along the airfoil. We shall now show that this quantity determines

the pressure force acting on the airfoil. To this end, notice that the

Yl-c°mp°nent of the momentum equation (3-45) and equations (3-B3) and

(3-B18) show that the pressure jump (p+ - p-) across the plate is related to Q

by

• I(P+ - P-) = a2P0U_°e -ikl dy
_Yl

Integrating this equation between Yl and c/2, recalling that p+ - p-

vanishes 31 at c/2, and using equation (3-B21) show that

• /p+ _ p- = alP0Uooe - ik 1 _2(Yl)dY
c/2)

(3 -B28)

Hence, the net force per unit area acting on the plate can be calculated by

carrying out the integrations in equations (3-B25) and (3-B28). But the manip-

ulations involved are extremely laborious. However, for compact sources it

is only necessary to know the total fluctuating force per unit length actil_ on

the airfoil. This force acts in the Y2-directi°n and is given by

31Since the Kutta condition implies that the pressure is continuous at the trailing_

edge and the jump in pressure across the vortex wake is zero.
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c'2F 2 = _ (p+ - p-)dy 1

- c/2)

= -iklU_" If c/2

-a2PoU_e LJ-(e/2)
f_(Yl)dYl-ikl Ic/2 f_{ yl

" -(c/2) c/2)

= -Poa2U e
-iklU_r

If c/2

J-(c/2)

fl(Yl)dY 1 + ikI
_2(Yl)dYl J

(3 -B29)

In order to evaluate the last integral in this equation, multiply equation

(3-B25) by Yl - (e/2) and integrate over Yl" Then upon interchanging the

order of integrations in this result, the inner integrals assume a form

dY 1

which can be evaluated from the results given in reference 65 to obtain
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¢,c/2 __ c

(c/2)

I

After performing these operations we find that
_c/2

1 " _2(Y 1)dY 1 =

:c/2 d

iklY' I

(c - y'l) e

c/2)

:/2

[_ -'_'-] dy_1

Z88



EFFECTOFSOLIDBOUNDARIES

But these integrals can again be evaluated in terms of Bessel functions

(ref. 64) to obtain

f(c/c/2
2) (YI -2)f_(Yl)dYl=

8i e-i(_l )((_1)+ + H }1)(o'1 ) +--

Hence, using this together with equation (3-B27) in equation (3-B29) shows that

-iklU_T

F 2 = _a2P0U_ce S(Crl) (3-B30)

where

S((_I)-:

Jo(O'l)H_l)(al) - H(OI)(o-I)JI(O-I)

H_I)(cI ) -iH(1)(C_l)

(3-B31)

is known as Sears' function.

The numerator of equation (3-B31) is the Wronskian of

is therefore equal to -2i/:(y I (ref. 13). Hence,

J0 and H(01) and

S((_i)= i (3 -B32)

This function can also be expressed in terms of the modified Bessel functions

K 1 _tnd K 0 of the third kind (for aI . 0) by using tilereiauons [ref. iJ)
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Ki(-i_I)= __ H_i)(_i)
2

l<0(_iul) = i_._._H(1)(Ul )
2

to obtain

s(_i)= i

-i(_l[K0(-i_l)+K l(-ial_

(3-B33)

If equation (3-B25) had been directly substituted into equation (3-B28) and

the indicated integrations performed, we would have obtained the relatively

simple result

-iklU_- I/__ - Yl
p+ _ p- = 2a2P0U_e S((_I)

+Yl

(3-B34)

The laborious integrations needed to obtain this equation are carried out in

reference 21.
h
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LIFT SPECTRA 32

Let us suppose that the frozen upwash velocity

EFFECT OF SOLID BOUNDARIES

u2(Y'-IU t) is cut off

outside some large volume element AV, as explained in appendix 1.A (sec-

tion I.A. 3). Then the Fourier-transform

a2(k)- _ (2_)31 ///u2(Y" - i U t)e-ik" (_" - i Ucot )
oF

exists and the lift force F2(Y3, t) produced by u 2 can be found by superposing

the elementary lift forces given by equation (3-75) to obtain

F2(Y3, t) :/f/a2(k)g(kl, k3)e i(k3y3 -klU_°t)
dk

= K(_,)u2(_', + kY 3 - iUoot)d _

where we have put

K(9) = 1 //f'_k -i-k._'(2_) 3 _( l'k3)e

Hence, the cross correlation of the fluctuating liftis given by

32The material in this al)pcndix follows ,an analysis used by Filotas (rcf. 66) to
study the response _f airfoils to turbulent flc_ws.
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F2(Y3, t)F2(Y3 + 7/3, t + r)

+ kw3 - iUoo_-)d_ d_' (3-C1)

where we have used the fact that the turbulence is assumed to be homogeneous

so that

_22---u2(_+kY3-iU_ot)u2/_"+k(Y3+r/3) -iUoo(t+_') )

depends only on the indicated argument. Then using equation (3-76) to intro-

duce the turbulence spectral density 4,22 shows that

F2(Y3,t)F2(Y 3 + 7/3 , t + r)

= ;fei(k3q3-wT) Ig(kl 'k3) l

JJ
4,22(_)dk2 dk I d& 3

We assume that this equation exists in the limit as AV grows to fill all

space. Then taking its inverse transform with respect to k 3 and _ = klUoo

shows that the function H22 defined through equation (3-74) is related to

4,22 by

H22(Y3;k 3, w) = C 2!- w k 2 k dk 2
g w ,k3 U J__ _22 ' '
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CHAPTER4

Effectof UniformFlow

4. I INTRODUCTION

The formulation of the aerodynamic sound problem developed in the last

two chapters is useful when the sound propagates through a medium which is,

for the most part, at rest relative to the observer. However, in certain

cases it is more appropriate to assume that the medium is in uniform motion.

Thus, in analyzing the sound produced by fans and compressors, it is com-

mon practice to assume that the fan is embedded in an infinite straight duct

containing a uniform flow (as shown in fig. 4-1).

SD_.
\,

Figure 4-1. - Fan in an infinite duct.

"2_99



AEROACOUSTICS

4.2 DERIVATION OF BASIC EQUATION

It is indicated in section 1.3.2 that problems involving sound propagation

in a uniformly moving medium can frequently be reduced to equivalent

stationary-medium problems by introducing a coordinate system _ which

moves with the flow. If the mean flow has a velocity U in the Yl-
direction

Yi = Yi - 61iU_" (4-1)

Then since the sound propagation in this frame is governed by a stationary-

medium wave equation, it ought to be possible to describe the sound emission

from a localized source region embedded in a uniform flow by applying

Lighthill's equation in these coordinates. Indeed, since Lighthill's equation

is an exact consequence of the continuity and momentum equations and since

the latter equations are invariant under the Galilean transfrom (4-1), it

follows from equations (2-4) and (2-5) that

 2p, c2° a2p,- - (4-2)

aYl

where

T.'.=/)1] _v i'v'j + 5ijlP- p0 )- c20(p - p0)]- eij (4-3)

is Lighthill's stress tensor expressed in terms of the ve!ecit:

v_ = v i - 51iC (4-4)

measured in the moving frame, is also an exact equation. However, it is

usually more convenient to work in terms of a stationary coordinate system.

Hence, introducing the fixed-frame coordinates Yi into equation (4-2) _but

retaining the moving-frame velocities_ shows that

3OO



EFFECTOFUNIFORMFLOW

2
--p'- c o

_2p, _ _2T_j

_Yi _Yi _Yi -_Yi

(4-5)

where

DO_ a

D'r _'r _Yl

(4-6)

The density fluctuations will therefore satisfy a convected wave equation out-

side the source region. A similar procedure shows that the momentum equa-

tion (2-3) can be written as

DOpv;+02 -
D'r _Yi _Yi

(4-7)

Notice that equation (4-5) is in the form of the uniformly moving-medium

wave equation (1-50). Hence, the integral formula (1-55) can be applied to

this equation in the same way it was applied 1 to Lighthill's equation in

section 3.2. In fact, using essentially the same manipulations 2 shows that

in place of equation (3-3) we obtain

p, = 1__ %2G T'- dyd7 l

c _.)

$_GGfidS(y) d7

,f+n

2
c o

(4-8)

where G now denotes a fundamental solution of the uniformly moving-medium

1In L_s Lirmting torm for a mecfum at rest.
2With eq. (4-7) used in place of eq. (2-3).
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wave equation (i.e., it satisfies eq. (!-51)) and hl is given by

P) D°cDOov_G+ v: _ pv v'
nihi = ni 1-- - niP0 i D'r

8yj

(4-9)

rather than bv equation (3-5).

Instead of using Liebniz's rule (eq. (1-48)) directly to transform the last

integral in equation (4-8) (as is done in section 3.2), itis convenient to first

add the divergence theorem to (I-48) to obtain

) ) )

V'n(p dS(_)

I

where V n is defined by equation (1-54). Then applying this formula to

8pvlG/_y i in the same way as Liebniz's rule was applied to ._PviG/?y i in
section 3.2 shows that the term in parentheses in equation (4-9) makes no

contribution to the last integral in equation (4-8), and as a consequence

FLp'(_',t) = 1__ _2G

c_ ) cy i cy]

-- T:I] dy" dT + _1 3___ f,. dS(y') d7

c 0 __) 1'i

_fTT _S( DoG dS_') dr

i

+ -- PoVn _ "
c 2 _.)

(4- 10_

where

TV n = V n nlU (4-11)

This equati_n ciiffers from equatior, (3-6) in several respects. First, it

involves a fundamental solution for the moving-medium wave equation (deter-
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minedby eq. (I-5!)) instead of a fundamental solution for the stationary-

medium wave equation. Second, Lighthill's stress tensor is expressed in

terms of the relative velocity v:z = vi - 5 liU instead of the total velocity v i

And finally, the volume displacement term is expressed in terms of

I

V n = V n nlU and D0/Dr rather than V n and a/Sr.

4.3 APPLICATION TO FAN NOISE

4.3.1 Derivation of Basic Equation

The most important application of equation (4-10) is to the prediction of

sound from fans and compressors. We shall use it to calculate the sound

emitted from a single fan located in an infinite circular duct (shown in

fig. 4-1) in which there is a uniform flow with velocity U. In this case it is

natural to use the Green's function derived in section 1.4.2.2.2. Then since

the normal derivative of this Green's function vanishes on the surface S D of

the duct and since the pressure component of the surface force fi (given by

eq. (3-4)) is in the normal direction, the contribution of the surface SD to

the first surface integral in equation (4-10) is

1 fTfs 0G dS(y')dr__ __ eijn j

c_ T D 8Yi

This term represents the generation of sound by the fluctuating viscous

stresses acting on the duct boundary. At the high Reynolds numbers of inter-

est in fan noise problems the contribution of this term to the sound field

is almost certainly negligible (see section 3.5.2.1). Moreover, since

n 1 = V n = 0 on SD, this surface cannot contribute to the third integral in

equation (4-10). Then the surface integrals in this equation need only be car-

ried out over the _u_L,,ce SF(r) of the fan blades to ebtain 3

:;'t_ denotes t.e :cgL,m insidc tile duct, exclu_hng the :=price occup'ie _,b. tit.. :-p
blades.
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p'(_',t)=I__TT v_(z

_2G
T:. dy" d_- + 1__ ___Gfi dS(y') d'F

i] c2 (T) _Yi

__TT _SF DoG dS(y') dT

1

+- " P0Vn DT
c20 (T)

(4-12)

The first term in this equation can be interpreted as a volume quadrupole

sound source. The second term can be interpreted as a dipole source

due to the fluctuating forces exerted on the flow by the fan, and the last term

represents the sound generated by the volume displacement effects of the

blades.

We shall follow the procedure used for propeller noise in section

3.5.1.3. Thus, we again neglect the contributions of the volume cluad-

rupole term and the volume displacement effects4 to obtain

p'(_', t) = ! Lq

C2 (v) cyi

fi dS(y') dv (4-13)

!

As in the case of a propeller, it is usual to express the force f

the blades on the flow in terms of the axial thrust component fT

component fD in the circumferential direction. Then

7:

and

exerted by

and a drag

fj _a_% ÷fT_A_ 
_Yj _' _<P0 OYl

(4-14)

41tcan be shown thatthe sound produced by the volume displacement effectswill

not propagate in an infiniteduct at subsonic tip _pecds _._eesect =.I,J.___.2 bclow_.
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where

_0 = tan-I Y3

Y2

and Yl are cylindrical coordinates of the source point.

to introduce the cylindrical coordinates

It is also convenient

x 3
_0 = tan -1

x 2

and x 1 of the observation point. Upon inserting equation (4-14) and the

Green's function (1-78) with the circular-duct eigenfunctions (1-79) into equa-

tion (4-13), we obtain after carrying out the differentiations

p, - e-i(Yn, mXl +wt)

¢_c oc

I _ _Jm(gm,n_)eimq____ <
4rrc_ F m, n

m=-_ n=l

4.

-i(m ¢Z0-Yn, mY 1
Jm (Kin, n_ ')e >,;, m fT/ei a:?

(4-15)
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where

fl= _1 M 2 1-

kn, m(k) = _k 2- /32K2,n
.#

(4-16)

± re(k)____ Mk kn, m (k)

_n, /32 ± f12

(4-17)

and the plus (upper) sign holds when the observer is upstream of the fan

(x 1 < yl ), while the minus sign holds when the observer is downstream of the

fan (x 1 > yl ).

It is again convenient to express the source in terms of a coordinate sys-

tem _ fixed to the blades. The cylindrical coordinates in this frame are _',

Yl' _nd

_' ----q_0 - _" (4-18)

where _2 is the angular velocity of the fan. Then the limits of integration of

the surface integral over the fan blades become independent of 7, and we can

interchange the order of this integration with the time integrationto obtain
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s=m+p (4-24)

we find after summing over s and p instead of m and p that the sound

field can be expressed as a Fourier series

with the s th harmonic

oo oO

2c20
p=-_ n=l

D S

oO

P'= _ Ps(_) e-is_t
S__.-oO

given by

Jm (Km, n _ )

F m, nkn, m, s

i(mq_ ± x
-_n, m, s 1 )

e

(4-25)

where

×(m n • )m,p- Nn, m,s n,m,p (4-26)

_/_0_) _ _2s2 _2K2
kn, m,s =kn, m = -- m,n (4-27)

+ = ± _<_0'/ M_s kn,m,____ss
7n, m, s 7n, m - fi2c0 ± f12

(4-2S)

and the thrust and drag coupling coefficients T
n, m, p

fined by

and are de-
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N±
Tn, m, p =_ fJm(Km ,n_ )ei(Y;,m sY_ -m_ '), , FT_]' d_ ' d,,o

JA

fA . 4" e t)

_± = ,)el(Vn, m, sYl -m_p D d_' d_o'
n, m, p Jm(Km, n_ Fp

(4-29)

Each term in the summation (4-26) is called a mode. Equation (4-25) shows

that the density fluctuation is the sum of an infinite number of tones at mul-

tiples of the shaft rotational frequency _. However, when the tones result

from a nonuniform flow entering a fan with B identical blades, the blade

force distribution must satisfy equation (3-111). Hence, its Fourier coeffi-

cients (4-23) are related to the Fourier coefficients (3-113) of individual blade

forces by equation (3-112). But inserting this into equation (4-26) and trans-

forming the result in the manner described in section 3.5. i. 3.2 shows that

only harmonics of the blade passing frequency f_B contribute to the sum

(4-25) and

_0 QO

PsB

2c_ F m, nkn, m,sB
p=-_ n=l

× (mDn _ - yn_. T ± ) (4-30),m,p m,sB n,m,p

where

m = sB - p (4-31)

the single blade force coupling coefficients, D e
n, m, p

given by

and T + are
n, m, p'
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q.3.2 Application to Pure Tones

A typical subsonic fan noise spectrum measured at the Lewis Research

Center is shown in figure 4-2. Figure 4-2(a) shows the frequency range

above 1 kilohertz (1000 cycles/sec), and figure 4-2(b) shows the range from

0.1 to 1 kilohertz (100 to 1000 cycles/sec) measured with a narrower band-

width filter. As in the case of propeller noise, the spectrum consists of a

broad component on which pure tones (corresponding to fan whine) are

imposed at various multiples of the shaft rotational speed _2. Now equation

(4-21) is quite general and can be used equally well to predict the pure tone

or broadband noise.

A

,

m
1=3

oJ

110

100--

90--

80--

70_-

90--

,_ Blade-passing-frequency
/' (BPF) tone

/- BPF second
/ harmonic

/-Continuous (broadband)

/ spectrum

(_ /-Multiple pure tones (MPT)
ii I

I I I I I I I I I
2 3 4 5 6 7 8 9 l0

Frequency, kHz

(a) Bandwidth, 32 hertz; frequency >l kilohertz.

r Broadband
,' level

80--

70 /

4 _ ",.

6o I I I I I I I I
.2 .3 .4 .5 .6 .7 .8 .9

Frequency, kHz

ib) Bandwidth, 3. 2 hertz; freouency, ]00 hertz to 1 kilohertz.

Figure 4-2. - Typical sound pressure level spectrum. Azimuth angle, 40°.

I
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The broadband noise must result from essentially random forces acting

on the blades, whereas the pure-tone noise results from periodic blade forces.

In this section, equation (4-21) is applied to the prediction of sound generated

by blade forces which are periodic at the shaft rotational frequency _. Such
5

forces can result from a steady but nonuniform flow coming into the fan.

Nonuniformities of this type are caused by inlet flow distortions and by the
6

wakes from inlet guide vanes (or stators) or other upstream obstructions.

For aircraft engine fans, inlet flow distortions can arise from crossflows,

streamwise vorticity sucked into the duct from nearby obstacles, and inlet

turbulence.

4.3.2.1 Derivation of equations. - The blade forces can now be ex-

pressed as a Fourier series

o_

for T,D (4-22/
p__.- oo

where the Fourier coefficients are determined by (appendix 1. A. 1

F a = a [2_/a
P 2_ "0 Tae ipf_'r d'r

(4-23)

Upon inserting equation (4-22) into equation (4-21) using the fact that

lim f|Te i_w-s_jT/_dT =2_6(w- s_)

T--,c -J-T

5V<e saw in chapter 3 that even small nonuniformities can generate substantixl
noi se.

6The first estimates of blade-passing sound due to stator-rotor interaction were

made hv Hetherington (ref. 1) in 1963, who combined the unsteady-lift theories of

Sear_ and Kemp "_th a free-_pace radiation model in which each blade was regarded as
a line force. The effect of the duct on the radiated sound field was first discussed Dy

Tyler and _;f_:in (ref. 2).
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where

¢I
e 7n' fa el}'n, for a T, D,

gS -_ +-- =

We again assume that the variation in retarded time between the front and

back surfaces of the fan blades can be neglected. Then

± elYn, m y

C

where Yl (_'' (p') is the axial (yl) coordinate of the blade chord (measured in

the rotating reference frame) and

f_) _aJ2)

T --Ln_)__+In_2)-_ | for_= T,D (4-201

is the net thrust or drag force per unit projected area acting on the blades .at

the point _', q_'. With this approximation, equation (4-19) becomes

m=-_ n=l

Jm(Km, n _ )e im _:

r'm_ n

X

. -F C_ ,)

Jm (Km, n _ ,)el(Yn, my 1 mq; mT D - m_)T dT

× _' d_' d_p' dw (4-21)
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jA r' " ± sY_-m_')

I(7n, m, ' T
= Jm(Km, n_')e Fp_

' d_' d¢'

_A _ " +

3+ sY_ -m_° ')
n,m,p - Jm(Km,n _')el(Tn'm' FpD d_' d_o'

(4-29)

Each term in the summation (4-26) is called a mode. Equation (4-25) shows

that the density fluctuation is the sum of an infinite number of tones at mul-

tiples of the shaft rotational frequency _. However, when the tones result

from a nonuniform flow entering a fan with B identical blades, the blade

force distribution must satisfy equation (3-111). Hence, its Fourier coeffi-

cients (4-23) are related to the Fourier coefficients (3-113) of individual blade

forces by equation (3-112). But inserting this into equation (4-26) and trans-

forming the result in the manner described in section 3.5.1.3.2 shows that

only harmonics of the blade passing frequency _2B contribute to the sum

(4-25) and

PsB

2c 2 r m, nkn. m.sB

p=-_ n=l

i(m¢-7;, m, sBXl )
e

n_ ± sBTn _. ) (4-30)× (mD .m,p- Vn, m, m,p

where

m =sB-p

the single blade force coupling coefficients, D +.
n, m, p

_iven by

and T +
n, m, p'

(4-31)

are
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T ±
n,m,p

Afo i ± sBY_-m (p ')

_ jm(Km, n_,)e (Yn, m, F 0 ,T, p_' d_' d¢

• ± f . ± C

Dn, m,p 10 jm(Km,n_,)el(Yn, m,sBYl -mop') 0

= FD, p

>" (4-32)

and A 0 is the projected area on the rotational plane of a single fan blade. In

many cases, y_ can be approximated quite closely by

C

Yl _ {'q_' cot X

where X is the stagger angle of the blade (defined in chapter 3).

Equation (4-30) is based on the assumption that all blades are identical,

and as a result it only predicts tones at harmonics of the blade passing fre-

quency. However, nonuniformities in either blade geometry or spacing can

cause tones to be generated at multiples of [he disk or shaft rotational fre-

quency. It can be seen from the fan spectrum in figure 4-2 that these tones,

which presumably result from small nonuniformities in the fan geometry, are

indeed much weaker than those at the blade passing frequency.

4.3.2.2 Effect of duct on propagation. - Equations (4-27) and (4-28) show

that _qctt%,m,sBn z- 0 and _mTn, m,s B < 0 whenever

s2_2B 2
> (4-33)_2K2

m,n 4

Hence, any modes in equation (4-30) which satisfy condition (4-33) must de-

cay exponentially fast at large values of I Xl I • Such modes are said to be

cut off since they do not propagate along the duct and therefore do not contrib-

ute to the sound field at large distances. Moreover, since (ref. 3) K2m n - o¢
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whenever m or n becomes infinite, it follows t,hat only a finite number of

modes can contribute to the sound radiated in any given tone.

The index p in equation (4-30) individuates the harmonic of the unsteady

force which generates that mode. The p = 0 modes are generated by the

steady, or time-averaged, force. They correspond to the Gutin mechanism

for propellers and, since the unsteady blade forces are caused by nonuniform

inflow (section 3.5.1.3.5), they will be the only modes which occur when the

inflow is spatially uniform. But equation (4-31) shows that p is zero when-

ever

m=sB

and equation (1-80) shows that the root

determined by
KsB, n for any mode with p = 0 is

JsB, n(KsB, nR) = 0

But since (ref. 3) the smallest root KsB ' 1 of this equafion is always larger
than 7 sB/R, the cutoff condition (4-33) shows that this mode will not propa-

gate if

;32 s2B 2 > _2s2B2

R 2 c 2

or equivalently if

where

2 t2 M2Mr_M. + <l

7For large values of sB,
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Figure4-3. - CylindricalductdecByrates. Mach number, M, Q:radialmode,

n, i. (From ref.2)

]
2.0

2-M2+M2iS the Mach number based on tip speed of the blade and hence Mr

is the Mach number of the flow relative to the blade tip. Thus, the p = 0

modes will not propagate whenever the flow is subsonic relative to the blade

tip. 8 When the blade number B is large, the decay rates of these modes

(which are determined by the magnitudes of kn, m sB ) are enormous. These
rates are shown in figure 4-3 (taken from ref. 2) _or the case where M = 0

and n = 1. (The figure also serves to show the precise value of _>.e tip Mach

number at which cutoff occurs. ) Thus, a fan operating at subsonic relative

tip speeds (as many fans are designed to do) could not generate any sound if

the inflow were completely uniform. However, any high-speed fan operating

subsonically in a duct certainly does produce a large amount of sound, rt is

generally believed that this sound results from a nonuniform flow entering

the fan. Thus, in the more general case where p is not necessarily zero,

the smallest root KsB_p ' l of equation (1-80) is

8The precise value of

is increased.

sB- p
KsB-p, 1 _ R

M r at which euto[f occurs approaches _n:L3 .a biaae .mlI_ber
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Hence, the cutoff condition (4-33) becomes approximately

sB-p > Mt

sB
_1- M 2

(4-34)

Suppose that the mean-flow Mach number is negligibly small (i. e.,

M _ 0). Then equation (4-34) shows there are modes (which can be generated

by nonuniform inflow) that will propagate even at subsonic tip speeds. The

index p of these modes must, of course, have the same sign as s.

It can be seen from equations (4-25), (4-30), and (4-31) that the phase

surfaces of the modes rotate with angular velocity

sB

sB- p

Hence, the circumferential velocity at the duct wall is

sB Mt
sB- p

Thus, the cutoff condition (4-34) shows that only modes which achieve super-

sonic rotational speeds will propagate through the duct.

4.3.2.3 Radiated power. - The quantity which is perhaps of most inter-

est is the total acoustic power ¢-PsB radiated in a given harmonic of the blade

passing frequency. This can be calculated by integrating the axial component

I-sB of the sB th harmonic of the average intensity over the cross-sectional

area of the duct. Thus, 9

_0 2_ _0 R= tim 2 TsB_ d_ dp
_C'PsB Xl-±_

(4-35)

9The factor 2 arises because both _sB and I-s B
in the sB th harmonic.
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Equation (1-118) and equation (l-A5) of appendLx 1.A show _hat

IsB: (I + M2)PsBUsB+ M IPsBI2

PoCo

f2 (4-36)+ P0c0MI UsB!

where

PsB : C2psB (4-37)

is the amplitude of the sB th harmonic of the pressure fluctuation and UsB

is the amplitude of the sB th harmonic of the acoustic (fluctuating) velocity.

But the axial component of the first equation (1-13) implies that UsB and

PsB are related by

_PsB {isBS2 M __Xl)_x 1 - P0C0 \ Co UsB

Hence, using equations (4-30) and (4-37) to eliminate PsB shows that

UsB - 1BLL
P0C0 2 F m, nkn, m, sB

p=_o_ n=l

Jm(Km, n _-) i(m_'_-Yn, m. sB" !'
e

>± mD± _ ;n,m, sB_n,m,p,n, m, sBI n,m,p "± _±
14-38",

where

n, m,sB -= -
f_sB

+ Mkn. m, sB
t 0
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Then substituting equations (4-30) and (4-38) into equation (4-36) and inserting

the result in equation (4-35) show (upon recalling that the duct modes (1-79)

satisfy the orthogonality condition (1-73)) that

= _ B2# 4_VsB _ (ass_
2P0C 0 \ c 0 /

all p,n with \
\c0 //

± ± 12mDn_, m, p - Yn, m, pTn, m, p

F
± Mkn, m, sB) 2

(4-39)

where

m=sB-p

And since the cutoff modes do not contribute to equation (4-38), the sum in

equation (4-39) is only carried out over propagating modes. The equation

shows that the radiated power is just the sum of the powers radiated in each

mode. Its properties are discussed further in section 4. o.-.

4.3.2.4 Calculation of blade forces from flow distortion. - in order to

use equation (4-30) to predict the sound emitted from a fan, it is necessary to

0 which enter the coupling coef-determine the unsteady force harmonics F_, p

ficients (4-32). They can be calculated from the distortion velocity enterin_

the fan by using the results obtained for propeller theory. Thus, if we sup-

pose (for purposes of illustration) that the blade forces are concentrated along

a radial line passing through the blade (which we can take without loss of re-

sults of generality to be the line q)' = 0), the results of section 3.5.1.3.5

can be used directly. To this end we assume that the two-dimensional analy-

sis developed in section 3.5.1.3.5 can be applied to predict the force per unit

ieno-h at each radial pnsition _' in terms of the Fo,,rie ,_ ar,:;)ii:t:(_es
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2_ ip¢Wp(_')=1 e °w(_',_o)d_o
2_

,10

of the circumferential harmonics of the distortion velocity w(_', q;0 ) which,

as in section 3.5.1.3.5, is assumed to be in the direction of the oncoming

flow. 10 Then it follows from equation (3-122) that the Fourier coefficients

F 0 and F 0 of the torque and drag forces are given by
T,p D,p

F° _ _(_'__J)
T,p = _' _cP0UrWp(_')S(C_p) sin X sin U

FOD, p = _ 5(_p'.__.__)_,vcP0UrWp(_')S(gp) cos X sin LL

where the various quantities appearing in these equations are defined in sec-

tion 3.5.1.3.5 (fig. 3-24). These results can now be substituted into equa-

tion (4-32) to calculate the coupling coefficients. If it is assumed that the

radial variations in the stagger angle X, angle of attack p, relative velocity

Ur, and chord length c can be neglected, the resulting equations become

T ±
n, m, p Tn, m, p

Dn, m,p Dn, m,p

c 1
= - 2 PoUr sin X sin p S( p)Wn, m, p

=--- (7 1 p_
c PoUr cos X sin p S( p)Wn, m,
2

(4-40)

where

/R j0_'2_ iP_0,
Win, m, p = e ore(Kin, n_')w(_', (p 0)(_') -1 d_' dot 0

(4-41)

10In fact, we suppose that all the assumptions listed in the beginning of that section

hold.
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are _he distortion harmonics and c, Ur, X, P, and _p are to be interpreted

as suitable average values over the duct radius. The coupling coefficients,

and hence the sound field, can be calculated from these formulas once the

distribution of the distortion velocity w(p, _p0) over the face of the fan is

known.

It is easy to show from the orthogonality properties (I-73) of the duct

eigenfunctions that the distortion harmonics W j (with p given by
n, m, p

eq. (4-31)) are just the coefficients of the Fourier-Bessel expansion

w(_', (p0) : (_,)l+j
_ " jm(Km,, i(m-sB)° 0

Win m, p n_,)e

r'm, n

m=-_o n=l

(4-42)

of the distortion velocity in terms of the circular-duct eigenfunctions. This

equation, together with equations (4-30), (4-40), and (4-41), shows that the

various radial and circumferential modes in the sound field are each deter-

mined by the corresponding "modes" in the distortion field. Hence, the more

nonuniform the distortion, the more higher order modes will appear in the

sound field. An improved treatment of the radial velocity variations (over the

simple strip theory result) can be obtained by using Filotas' formula (3-68)

or Mugridge's result (3-69) to calculate the blade forces. However, these

formulas require that the velocity be decomposed in a Fourier series in {'

which is incompatible with the natural Fourier-Bessel expansion (4-42). Be-

cause of this incompatibility, these formulas lead to somewhat awkward re-

sults.

4.3.2.5 Sound generated by rotor-stator interactions. - In the last sec-

tion we showed how the sound field can be calculated once the distortion veloc-

ity distribution entering the fan is known. But it is frequently difficult

to determine this quantity since it can vary from fan to fan in a rather unpre-

dictable manner and in any given fan it can vary widely with operating condi-

tions. However, it is relatively predictable, in the important case of a rotor

operating behind inlet guide vanes (IGV's) or stators (as shown in ¢ig. 4-4_.

The stator-rotor interaction was studied by Kemp and Sears refs. 4 and 5).
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Stator _ Ro_tor

Figure4-4. - Stator-rotorinteraction

11
They showed that the stator can affect the rotor in two ways, namely,

through its potential-flow field and through its wakes. The incompressible

potential-flow field due to a two-dimensional object decays inversely with

distance, whereas the velocity decrement in the wake decreases approximately

as the square root of the distance from the stator. Thus, when there is a

large separation between the rotor and stator, it can be anticipated that only

the wake-viscous interference effects will be important. At closer ,_pacing.

we might expect the potential-flow interactions to dominate. Kemp and Sears

found that, under typical conditions, the wake effects were of the same order

as the potential-flow effects for a rotor-stator separation of about one-tenth

of a stator chord length. However, in order to reduce noise and vibration,

the rotor-stator separation in most modern compressors is usually greater

than a chord length. Hence, it is likely that the wake of the stator is the main
12

cause of the flow disturbance.

We shall suppose that the viscous effects in the wake can be neglected and

that the two-dimensional model developed in section 3.5.1.3.5 applies

llThese remarks also apply to rotor wake - stator i nte r_ction_

12At high subsonic and transonic Mach numbers the 9otential-tlow field can cx-tcnd

far from the body, and these conclusions could be in era'or.
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(fig. 3-24). Then the coupling coefficients are related to the _zake velocity

profiles by equations (4-40) and (4-41). However, if there are V stator

blades, the distortion pattern seen by the rotor must be periodic with period

2rr/V. Hence, distortion harmonics (4-41) will be nonzero only when the azi-

muthal index p is an integral multiple of V. It therefore follows from equa-

tion (4-40) that equations (4-30) and (4-31) become

PsB -

oo <_)

: 0LL
p=-_ n=l

Jm(Km, n[) i(m_ ±e -_n, m, sBXl )

Fro, nkn, m, sB

and

× (mDn_, m, pV
+ T ±

}'n, m, sB n, m, pV) (4-43)

m = sB - pV (4- 44)

A very similar analysis can be performed to predict the sound field resulting

from the passage of the rotor wakes over outlet guide vanes (OGV's). In this

case, however, there is no need to transform the variables of integration into

a moving-coordinate system. In addition, the forces on the OGV's are

periodic in time, with period 2rr/_B. The result

oo oO

vZT= _ e m, sBXl )

PsB 2c20 F m, nkn, m, sB-

p=-_ n=l

m + ± T± sB) (4-45)× ( Dn, m,sB- Vn, m,sB n,m,

where m is still given by equation (4-44), is remarkably similar to equa-

tion (4-43). This shows that the essential features of the two sound-radiation
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processes are similar. The principal difference between these equations is

that the last arg-ument of the coupling coefficients is changed from pV to the

harmonic number sB of the radiated sound frequency. It can therefore be

seen from equations (4-40) for the coupling coefficients that the sound radi-

ated at a given frequency by a stator is determined only by the angular har-

monic of the wake velocity field with the same frequency. On the other hand,

the sound radiated at a given frequency by a rotor depends upon all angular

harmonics of the wake velocity field, and any given harmonic of the wake con-

tributes to all harmonics of the sound field.

Increasing the rotor-stator separation decreases the wake velocity decre-

ment at the downstream blade row. Hence, equations (4-40) and (4-41) show

that the wake interaction noise from both rotors and stators decreases with

increasing separation from the upstream blade row. This effect is indeed

observed in practice.

Since (as shown in section 3.4.2.2) Sears' function approaches zero at

high reduced frequencies, equations (4-40) imply that the noise generated by

a fan stage can be reduced by increasing the reduced frequency ap. But the

equation at the bottom of page 252 shows that this can be accomplished for

a fixed relative velocity by increasing either the blade chord c or the fre-

quency p_ of the gust. Thus, since equations (4-40) and (4-45) show that

p cc B for rotor wake - stator interactions, it may be possible to reduce

stator noise by increasing either the number of fan blades or the chord of

the stator blades. A fan stage with very long stator (OGV) 0ia,:es _ being

tested at the Lewis Research Center.

Immediately behind an upstream blade row the wake velocity profiles tend

to be sharp, and many circumferential harmonics contribute to the wake dis-

turbance velocity. However, they tend to smooth out further downstream.

and the first few harmonics probably make the dominant contributions to the

velocity in this region. Hence, we expect that the sound field radiated by a

stator will contain many harmonics of the blade passing !'r:quency at small

rotor-stator separations and that increasing the separation will preferentially

tend to reduce the higher harmonics of the sound field. Increasin_ the sepa-

ration between a rotor and an upstream blade row should tend to decrease the
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13
sound in all harmonics.

A wake which is highly nonuniform in the radial direction should contain

a larger number of radial harmonics than one which is uniform. Hence,

equations (4-40) show that as the wake becomes more nonuniform there is a

tendency to increase the higher order radial modes in the sound field. How-

ever, these modes are more likely to be cut off by the duct.

In order to calculate the sound field, it is necessary to determine the

wake velocity profiles which enter the coupling coefficients (4-40) through

equation (4-41). Kemp and Sears (ref. 5) used the Silverstein, Katzoff, and

Bullivant (ref. 7) single-airfoil wake model in an analysis of the type de-

scribed in section 3.5. I.3.5 to calculate the fluctuating blade forces in a cas-

cade. Since then this model has been used by a number of investigators to

study fan noise. However, itis currently recognized that, due to such effects

as the thickening caused by strong axial pressure gradients, an isolated-

airfoil wake model is wholly inadequate to describe the wakes which occur in

turbomachinery. In fact, itturns out that the wakes in real turbomachines

are highly skewed (ref. 8). This results in large variations in the phases of

the liftfluctuations in the radial direction and a large streamwise vorticity

component which is not included in Silverstein's two-dimensional model.

An improved wake model, based on data taken mainly from two-

dimensional cascades, was developed by Lieblein and Roudebush (ref. 9).

This model was used by Dittmar (ref. 10) to calculate the fluctuating lift

L:rces op. _tatcr blades.

For high-solidity (ratio of blade chord to interblade spacing) cascades the

mutual interference effects between the various blades of the cascade could

have an important effect on the fluctuating lift forces. This effect was ana-

lyzed by Henderson and Daneshyar (ref. 11) for an incompressible flow

through two-dimensional cascades (still using linearized theory). There have

been a large number of studies (which we have not mentioned) of the fluctuat-

_._;-_blade forces i-.........._'ascades. V!rtuallvall of these (except for scme ......

purely numerical studies) use linearized-thin-airfoil theory. This approxi-

mation implies (since the angle of attack and camber must be small) that the

blades are lightly loaded. The effects of compressibility, which can also be

;These cone_usmns a,,_p,-_:'.r L.,_,rex.,; been fi :-_t ob'a,,.,te'i ;._ L_m :['_ .. _ .:.=[::_ -:

free-space model of the fan.
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important at the high Mach numbers where jet engine fans and compressors

operate, are discussed in chapter 5.

Most current bypass engine designs do not utilize inlet guide vanes for

the fan. Therefore, the wake interaction mechanism of most technological

interest is the rotor wake - stator (OGV) interaction governed by equa-

tion (4-45). However, since the same modes appear in both equations (4-43)

and (4-45), the cutoff condition (4-43) applies to both processes. And since

p is now an integral multiple of V, this condition becomes

sB:_V > Mt

, sB. #
_I-M"

Hence, the sound generated at the fundamental harmonic (s = 1) cf tile b 'Lade

passing frequency will not propagate if

1-pV>
B

for every integer p. This formula indicates that a subsonic fan stage

M 2 - _ • M 2 < i will radiate no fundamental 5lac:e-?as_:i_:_-[r_quency r::lc_

if the vane-blade ratio V/B is greater than 2. Many Lar, s;ages ha_e L)==,,_

designed to take advantage of this cutoff phenomenon. These fans are usually

still found to produce spectra containing strong fundame::tal biade-l:,assin_-

frequency (BPF) tones when tested on the grot,,nd. It is _:ener_liv believed

that the tones are being generated by either steady inlet flow distortions or

inlet turbulence interacting with the fans.

4.3.2.6 Sound generated by inlet flow distortions. - The effect of ste,_,:Iv

inlet flow distortions on pure-tone fan noise was investigated by Povinelli,

Dittmar, and Woodward (ref. 12) in a combined theoretical and analytical

study. They calculated the emitted sound from a free-space rotor model

(such as that developed in section 3.5.1.3.2! bv usin,_ uea:_are,i i:_]_i ,'_.....

distortion. It was found that the theory tended to underpredict the abselute

325



AEROACOUSTICS

level of the measured sound field.

It is reported in recent studies by Filleul (ref. 13) and by Sofrin and

McCarm (ref. 14) that under certain circumstances where the rotor-stator

interaction noise is expected to be negligible the pure-tone noise correlates

with the inlet turbulence. Indeed Sofrin and McCarm's (ref. 14) narrow-band

measurements in the vicinity of the BPF tone resulted in output signals which

tended to be fluttery instead of steady and piercing as they are for rotor-

stator interactions. Inflow turbulence will produce sound by the dipole mech-

anism described in section 3.5.1.1 for struts in turbulent flows. However,

ff the blade passing frequency is large compared with the frequency U/Z

associated with the convection of an eddy of length l lYa_t the fan, the blades

can cut an essentially stationary eddy several times. This tends to concen-
14

trate the radiated energy in the blade-passing-frequency harmonics. The

tones will then appear to have a finite bandwidth as they do in the experimental

spectrum shown in figure 4-2. (Of course, broadening of tones can also re-

sult from shaft vibration or speed variation as well as from unsteadiness in

the inlet flow distortion. ) Thus, inlet turbulence can be a source of both

pure-tone and broadband noise. The generation of sound by inlet turbulence

was analyzed by Mani (ref. 15). He used a model similar to the one described

in section 3.5.1.1 but applied it to a moving cascade rather than to a single

stationary strut.

Inlet turbulence can also produce sound in an isolated rotor thrvugh a

quadrupole interaction. This mechanism w_s first pro_osed by Ffowcs Wil-

liams and Hawkings (ref. 16). Thus, when a rotor is loaded (i. e., when it

produces lift), it induces a spinning "rotor-locked" asymmetric pressure

field in the duct. We have seen that this pressure pattern cannot propaga[e

when the rotor is subsonic. But when it interacts with inlet turbulence, it

produces a fluctuating Reynolds stress 15 which can act as a quadrupole sound

source. In fact, this appears to be the first treatment in the literature of

quadrupole fan noise.

This process has been studied in somewhat more detail by Chandrashek-

hara (ref. 17) for low-speed (tip Mach number less than 0.3) fans. A free-

14This feature does not ,_ecur in the strut problem in ,_ection 3.5. !. 1.

15In addition to the one due to the self-interaction of the turbulence !winch ,)a_r.L _

be relatively small).
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space rotor model of the type described in section 3.5.1.3.2 was used. He

found that the dipole noise produced at these speeds dominated the quadrupole

noise. And, in fact, Mani's dipole theory (ref. 15) agreed fairly well with his

measurements of the sound field. However, the ratio of the strength of a

quadrupole source to that of a dipole source varies as a typical Mach number

squared, and the strength of the quadrupole source increases in direct pro-

portion to the blade loading. Hence, at the much higher Mach numbers and

high blade loadings at which current fans operate, it is quite possible that the

quadrupole source will dominate. In addition, the radiated BPF power does

not always increase with tip Mach number as the dipole model seems to pre-

dict. Thus, 16 recent experiments by Gelder and Soltis (ref. 18) on very

clean inlet fans show that, at the higher subsonic Mach numbers, the inlet

BPF power levels increase with increasing blade loading even when the rela-

tive tip Mach number decreases. This type of behavior is exibited by the

quadrupole source.

The argument that the quadrupole term in the general equation (4-8) will

dominate over the dipole terms at the higher Mach numbers encountered in

fans can of course be applied to other noise mechanisms. At these higher

Mach numbers we cannot invoke the compactness arguments used in sec-

tion 3.3.4.2.17 Thus, Morley (refs. 19 and 20) estimated the importance of

the quadrupole terms for sound generation due to the nonuniform-steady-flow,

rotor-blade potential field interaction. His estimates for a typical fan rotor

indicate that quadrupoles become progressively more important as the Mach

number increases and can generate more noise than the fluctuating-blade-

force dipoles at Mach numbers as low as 1/2. This might be an alternative

explanation for the discrepancy (discussed at the beginning of this section)

between the measured and predicted flow distortion noise found by Povinelli,

et al. (ref. 12).

Up to now we have considered inlet flow distortions which are either

steady or randomly fluctuating in time (turbulence). However, as pointed out

by Benzakein (ref. 21), a spatially nonuniform distortion pattern entering the

fan with a uniform angular velocity would produce sidebands to the BPF tones

l_This was pointed out by Magi (personal communication).

17it is shown in chapter 5 that the quadrupoles represent nonlinear interaction
terms.
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which would result in the spectrum at non-engine-ordered frequencies.

tones are detectable in the fan spectrum in figure 4-2.

Such

4.3.3 Broadband Noise Sources in a Fan

Aside from inlet turbulence, there are a large number of other possible

sources of broadband fan noise. For example, the noise produced by vortex

shedding and turbulence generated in the blade boundary layers (discussed at

the end of section 3.5. I.2) may make a significant contribution to the broad-

band spectrum.

Another source could arise from nonuniform wake profiles. Thus, meas-

urements of the "mean" velocity profiles of wakes show that these profiles

are not the same from blade to blade but vary in a random manner about some

mean value: 18 This random component of the nonuniform flow impinging on

the downstream blade row should certainly generate broadband sound.

4.3.4 Multiple Pure Tones

Most of the noise m_chanisms discussed up to now can occur at both sub-

sonic and supersonic speeds. However, at supersonic relative tip Mach num-

bers the phase-locked rotating steady pressure field (associated with the

p = 0 modes in eq. (4-30)) can propagate out of the duct. Since the strength

of this pressure field is proportional to the steady blade forces, which are

considerably larger than the unsteady forces, we would expect itto dominate

at supersonic speeds. But, due to nonlinear effects associated with the for-

mation of shock waves, this analysis does not apply at supersonic speeds.

Thus, the shock wave structure attached to the leading edges of the blades of

a perfectly periodic rotor would appear as shown in figure 4-5(a). To the

right of the figure is a schematic of the pressure-time history which would be

observed by a probe microphone. However, the small nonuniformities in

blade geometry and spacing which occur in any real rotor cause perturbations

in the shock pattern. And, as shown in figure 4-5(b), the dynamics of the

propag_ating shock train tends to emphasize these imperfections through the

IR
This could, for _xample, be caused by the transmissions of inflow Lurbulence

through, and possible amplification by, a heavily loaded rotor.
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Figure 4-5. - Multiple-pure-tone noise at supersonic tip speeds.

mechanisms of shock overtaking and coalescence. 19 The pressure-time his-

tory observed by a probe microphone will then appear as shown at the right of

figure 4-5(b). In this case there is no longer any evidence of blade-passing-

frequency periodicity, but the pattern does repeat itself with every turn of the

rotor. Thus, the sound is produced at the shaft rotationai speed. .\ L/,-pical

supersonic fan spectra is shown in figure 4-6. It can be seen that this spectra

(unlike the subsonic fan spectra shown in fig. 4-2) is dominated by tones at

the shaft rotational speed. These tones are called multiple pure tones (or

combination tones) and produce a sound described as "raspy" or "buzz saw. "

Morfey and Fisher (ref. 22) and Hawkings (ref. 23) have analyzed the

shock wave coalescence by us{rig one-dimensional saw-toothed shock models.

Their analyses describe how an initially nonuniform shock train evolve_ '.o

become increasingly irregular _Ath distance. They show that the shock

strength eventually becomes independent of the initial conditions and decays

as the inverse power of distance. They also show that the axial-flow Mach

191{ecall, for example, that higher amplitude shocks propagate laster than lower

amplitude ones.
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Figure 4-6. - Typical narrow-band spectrum from a supersonic fan.

I
10000

number has a strong influence on this decay rate. Hence, changes in cross-

sectional area of the flow duct (which result in changes of axial Mach number)

can be very significant. However, analyses of this type cannot be directly

related to the irregularities in fan geometry. This drawback was overcome

by Kurosaka (ref. 24), who used the method of characteristics and oblique

shock relations to carry out a two-dimensional analysis. He show,_d that

errors in blade stagger (and contour) are much more important for producing

multiple pure tones than errors in blade spacing. Indeed spacing errors only

cause changes in upstream shock spacing, while stagger errors cause changes

in both position and strength.

At supersonic speeds there is the possibility of an additional broadband

noise source associated with the passage of turbulence through the shocks.

4.3.5 Effects of Finite Duct Length

The analysis developed in the previous sections cannot be used directly

to predict the sound in the far field, where it is of principal interest. How-

ever, this limitation can be removed by using the semi-infinite-duct Green's

function 20 (fig. 3-29) in equation (4-13) instead of the infinite-duct Green's

function. In addition to being able to calculate the sound in the far f_e!d, this

20This Green's function can easilv be obtained from the .c_ult_ ,_,iv,-n in ref. 25.
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approach has the advantage of including the effects of reflection from the end

of the duct and refraction by the duct lip. An analysis of this type was car-

ried out by Lansing (refs. 26 to 28).

A more approximate analysis which uses the infinite-duct solutions was

given by Tyler and Sofrin (ref. 2) for the case of zero mean flow. Thus, if

the reflections from the end of the duct are neglected, the sound field at this

point can be calculated from the infinite-duct model. Tyler and Sofrin as-

sumed that the duct opening can be replaced by a flexible diaphragm in an

infinite rigid baffle (as shown in fig. 4-7) which vibrates with the acoustic

velocity predicted by the infinite-duct solution (4-30). Thus, inserting the

half-space Green's function (1-65) into the Green's formula (1-58) shows,

upon recalling that _p/_n is zero on the rigid boundary, that the far-field

pressure fluctuation is given by

_-_,rl f 2n I _" sin_c°s(_- _i!)# d#d_1

P~ 1 R e___p_p , t_ r_r__+#

JO _Yl Co Co

Figure4-1. - Flangeddut:L
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where

= {-l, _ COS _, _ sin _}

with the polar coordinates defined in figure 4-8. And for a single harmonic

p = PsB e-isB_t of the blade passing frequency, this becomes (upon using

eq. (4-37))

PsB ~ eiksBr fRf27r2_r J0 dO aPsB(Y')_Yl e-i_ksBsinSc°s(_- ¢ 1) _ d_ de'

(4-46)

where

ks B = sB_

c O

/- Observation point

/
/

/

/

/

\
R

/-- Fan
/

/

\

Figure 4-8. - Fan in a semi-infinite duct.
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Then setting M = 0 in equation (4-30) (so that _n, m, sB = ±kn, m, sB )

and inserting the result in equation (4-46) show that 21

PsB

oc oo

 _ eiksBr
2c 2 r

p=_oo n=l

Jm(_m,n R) ei(m<p+kn, m, sB/)

Fm,nkn, m, sB

• - T +× Hn, m(ksB'0)(mDn, m,p kn, m,sB n,m,p)

where the directivity factor Hn, m(ksB, 8) is defined by

Hn, m(ksB, 8) = -i

kn, m, sBksB sin 0e- (imp/2)

2 2 sin 2
Km, n - ksB

Jm(ksBR sin 8)

(4-47)

(4-48)

and the prime on the Bessel function Jm denotes differentiation with respect

to its argument.

The sum in equation (4-47) must now be carried out over all modes,

whether or not theycorrespond to propagating waves in an infinite duct. Be-

cause of the experimental factor exp(i/kn, m, sB )' however, the nonpropagat-

ing modes will only contribute weakly to the sound field when the duct length

l is larger than the radius.

When Lansing's more exact solution is used, equation (4-47) remains the

same but the directivity factor (4-48) becomes (ref. 27)

Hn, m(ksB, _) = -i tan _ e-(im_/2)Jm(RksB sin 8)
2

(ksB + kn, m, sB)(ksB cos _ + kn. m.sB)K_m)(kn, m. sB )

2 e)K(+m)(ksB cos2(K2m,n - ksB sin 2 8)

21Of course, this result cannot be used to calculate the sound field in the re,on
behind the duct opening (e > 90o).
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where the term K(m)(_) is defined to be the limiting value
+

_- 0 of the Cauchy integral. 22

lim K_m'(_ + ic);
E-0

In K(m)(x) 1 Z _ In -2Km(V)Im(V)

:__ I
2_i _- X

_k 2 _ ¢2y-R sB

and the primes on the Bessel functions Jm' Kin' and I m denote differentia-

tion with respect to their arguments.

In reference 26 Lansing compared the Tyler and Sofrin solution with his

exact semi-infinite-duct solution. He also compared these results with solu-

tions obtained by Lowson (ref. 6) from a free-space rotor model. The total

radiated power calculated by these three methods is shown as a function of

frequency in figure 4-9. At all frequencies shown, Tyler and Sofrin's solu-

tion is in close agreement with Lansing's solution.

Due to the factor kn, m, sB (which vanishes at resonance) in the denomi-
nator of equation (4-39>, the infinite-duct model predicts infinite acoustic

power as the cutoff frequencies of the various modes are approached from
23

above. The sharp peaks exhibited by Lansing's solution in figure 4-9 also

occur at these cutoff frequencies. However, these peaks remain finite. The
24

Tyler-Sofrin solution shows abrupt increases as these frequencies are

approached but does not exhibit the sharp peaks found by Lansing.

A comparison between the irffinite-duct solution (eq. (4-39)) and Lansing's

solution is shown in figure 4-10. In this figure (taken from ref. 28) the nor-

221n takingthislimit, itis necessary to use the Plemelj formulas discussed in

appendix 3.B (see refs. 62 and 63 of chapter 3).

231tis shown in chapter 5, hu_wever, thatthe effectsof compressibility on the

blade forces act to keep the power finite.

24The radiated power predicted by eq. (4-39)can differfrom that predicted by the

Tyler-Sofrin method since the later procedure does not require that continuitybe satis-

fiedacross the duct exitplane.
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Figure 4-9. - Radiated sound power due to torque and thrust.
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Figure 4-10. - Radiated sound power for circumferential
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ref. 2_.1
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malized sound power radiated in the n = 5, m = 3 mode is plotted against the

frequency sBR_2/c 0. It shows that the infinite-duct model provides an ex-
cellent method for calculating the total radiated power as long as the fre-

quency is even slightly above cutoff.

Lansing also compared the directivity patterns predicted by these three

solutions at the dimensionless frequency s_BR/c 0 = 12. This comparison is

shown in figure 4-11. In reference 27, directivity patterns calculated from

Lowson's and Lansing's solutions are compared with data from a research

compressor. These results are shown in figure 4-12.

_(. _=:_ _ Lansing theory (ref, 25)

------ Lowson Iref. 6)

........ Synthesized from Tyler

0 and Sofrin (ref. 21

(

/ /'_ /__--___j / #\
/ / \ _', -r-_.. / \

j, •
I ,' I l _'_J--p I J I

40 30 20 i0 0 I0 20 30 40

Sound pressure TeveL dB

Figure4-ll. - Directivitypatterns due to thrusl and toraue. Ratio of toraue to thr_Jst, 0.75; sB -pV: 5;

sOBR/co_ 12. _From rel. 26.)
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Free-field theory ' Circular-duct Experiment
theory

Figure 4-12. - Radiationpatterns for a research compressor. (From ref. 27.)
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CHAPTER5

TheoriesBasedonSolution
of LinearizedVorticity-
AcousticFieldEquations

5.1 INTRODUCTION

The last three chapters were based entirely on the acoustic analogy ap-

proach, wherein the sound field is calculated by constructing a model for an

equivalent acoustic source term. Because of the inherent limitations of such

an approach (which are discussed in detail in chapter 2), we would like to cal-

culate the sound emission by solving the differential equations :.,'overning the

flow. Unfortunately, this is nearly impossible for most real flows. But re-

call that in the dipole analyses the sound field was linearly related to the sur-

face forces, which were in turn calculated by tinearized equations from the

oncoming flows. It, therefore, ought to be possible to obtain solutions _o

these problems (at least under certain conditions} by proceeding directly from

the linearized momentum and continuity equations. In this chapter we shall,

by considering a specific example, show how this approach can be carried out.

Before proceeding with this, however, weshall establish certain general

properties of these linearized solutions.
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5.2 DECOMPOSITION OF LINEARIZED SOLUTIONS INTO ACOUSTICAL

AND VORTICAL MODES: SPLITTING THEOREM

When the mean velocity U is constant, the linearized continuity and mo-

mentum equations (1-13) become (in the absence of volume sources)

DO_
P0 - -Vp (5-1)

Dr

1 DoP

P0C02 Dr

--v. _ (5-2)

where

DO a + U 8

Dr Or ay I

(5-3)

We shall now show that the velocity _ can be decomposed into solenoidal

(zero divergence) and irrotational (zero curl) parts in such a way that the

pressure fluctuations are determined only by the irrotational part. Thus, we
1

shall show that there exist vectors u-"I and u_ such that

_'= U'l+ u'2 (5-4)

Vxu l=v. _2 =° _5-5)

D0F l
= -Vp

P0 DT

1 D0P
- -v. _i

_0c2 DT

1This result is called the splitting theorem.
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D0_'2 - 0 (5-7)

DI-

To this end, recall that since every vector field can be decomposed into sole-

noidal and irrotational parts there ex{st vectors u[ and u 2 such that

V

= 71 + 52 (5-8)

v ×_'1: v. ;2 =0 (5-9)

Hence, equation (5-1) can be written as

_" = P0 --"D0"---_ul+ Vp = -P0 D0u---_2 (5-10)
D'F D_-

Then since the second member of this equation has zero curl and the last

member has zero divergence, the vector A must be both solenoidal and Jr-

rotational. It follows that the vector _'0 defined by

(5-11)

has the property that

v × _'0= v. _0 =o (5-tin

and satisfies the relation

P0 m
Dou 0 -

=A

D_

(5-13)

Hence, inserting equation (5-13) into equation (5-!0_ shows that *he -.'ect:_.rs
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(5-14)

satisfy the first equation (5-6) and equation.(5-7), respectively. It follows

from equations (5-9) and (5-12) that equation (5-5) holds. And finally, the last

equation (5-6) is a consequence of equations (5-5) and (5-2).

Since (as can be seen from eq. (5-6)) the irrotational vector _I is the

part of the velocity associated with the pressure fluctuations, it is called the

acoustical l_article velocity. And since the vorticity

_, = VX_'= Vx_' 2

is determined solely by the velocity u'2' the latter quantity is called the vorti-

cal velocity. Thus, within the flow the interactions between the acoustic and

vortical motions must occur through second (or higher) order nonlinear terms.

We have seen that the sound source in Lighthill's theory can be modeled

by the fluctuating Reynolds stress P0uiuj, with u i and uj effectively taken

as the vortical part of the velocity field. Thus (at least for sufficiently small

motions) the generation of sound by Lighthill's quadrupoie mechanism is es-
2

sentially a second-order nonlinear interaction process. Equation (5-7) shows

that the vortical modes, aside from being convected by the mean flow, remain

unchanged. This is consistent with the results of section 2.5. I.2 _Tayior's

hypothesis), which show that jet flow turbulence 3 decays slowly in the moving

frame.

Although t.heacoustic and vortical modes each behave, in the linear ap-

proximation, as ifthe other were not present, these modes can indeeci inter-

act at the surface of a solid boundary. Thus, since the total velocity u must

satisfy the boundary condition u-. _ = 0 on any solid surface, itfollows that

U'l and _'2 must be related at this boundary by

2The sound fieldcan generate vorticitythrough a second-ord_.r interaction. In

fact.this problem was studiedbv Rayleigh nearly 100 years azo. mhe _ocond-nrder

intceactions ,_vcIc later _tudied in detail ;;v Chu and Kovaszna)' _ef. _.j.

3Which is essentially pure vortical motion if the Mach number in not too high.
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_1" fi=-_2 a

It ts this coupling between the acoustic and vortical alodes v¢i_ich generates the

dipole sound at a solid surface. Since this mechanism is a linear process, it

is reasonable to assume that it will dominate over the nonlinear quadrupole

volume sources wherever the fluctuating velocities are small enough.

5.3 SOUND GENERATED BY A BLADE ROW

5.3.1 Formulation

We shall now Show how the sound generated by this process can be calcu-

lated by solving the linearized acoustic-vorticity equations (5-4) to (5-7). To

this end, we shall reconsider the problem of a fan rotating with angular veloc-

ity _ through a stationary convected disturbance.

In this section the problem will be formulated, and in the next section it

will be reduced to solving an integral equation. The various methods which

have been used to solve this equation are then discussed. We next show how

the radiation field can be calculated, and in the last section the connection

with the acoustic analogy approach is made. This allows us to assess the im-

portance of including con_pressibility effects in the source model.

In order to simplify the problem, suppose that the hub-tip ratio of the fan

is close enough to unity so that curvature effects can be neglected and the

blades can be "unrolled. " Thus, we consider an infinite row of blades (as

shown in fig. 5-1) moving transverse to itself between two infinite parallel

plates with the linear velocity

u 0 -- _.R0 (5-15)

where R 0 corresponds to some mean radius of the fan. The spacing b be-

tween the plates is equal to the blade span. We suppose that the vortical ve-

locity field u_. is specified upstream of the blade row. It is assumed that the

blades are thin and at a small angle to the oncoming relative velocity U
r

The amplitude of the vortical flow is also assumed to be small compared to
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Figure 5-I. - Infinite cascade.

U r. Then the flow will be governed by the linearized equations (5-1) and

(5-2).

It is shown in section 3.4. 2.1 that the unsteady part of a linearized in-

compressible flow past an airfoil is independent of the camber and angle of at-

tack. It can be shown that this decoupling between the steady and unsteady

flow also occurs in the compressible flow problem being considered in this

section. Hence, we can replace the blades of the cascade by flat plates at

zero angle to the relative flow.

Let the _-coordinate system be alined with the oncoming flow as shown in

figure 5-2. Thus, upstream of the blade row the nonuniform velocity consists

of a vortical part U_o and an acoustic part. We shall suppose that the acous-

tic part represents an outgoing wave far from the blades but is otherwise left

unspecified. Since the vortical flow is steady, it can depend only 4 on Y2 and

Y3" However, ifthe problem is +o _orrespond to _n unrolled annulus, u-_

4Eq. (5-?) shows that the vortical motion depends on YI and _- only in the combi-

nation Y1-UT.
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Figure5-Z - Flowintocascade.

must be periodic in the direction of motion of the blade row with the circum-

ferential distance 2,'rR 0 being equal to an integral multiple of its ,.vave!engths.

Then since the dimension in the Y3-direetion is finite, u-_ can be represented

by the double Fourier series
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>--_[( /_qY3'_ C__) ] (2;iPY2)/(L 0 cos _)_o = lap, q + JBp, q)COS/---_) + I_Cp, q sin e

P,q
(5-16)

where

L 0 = 2_R 0 (5-17)

is the circumference; %,q, Bp, q, and Cp, q are complex constants; I, J,

and I_ are unit vectors in the YI-' Y2-' and Y3:directions, respectively;

and v is the angle between the oncoming flow direction and the perpendicular

to the blade row. Notice that the Y3-component (normal component) of each

term in this series vanishes at the walls, Y_ = (0, b).

Since equation (5-16) represents a purely vortical velocity, _oo must sat-

isfy the solenoidal condition Vy • Too = 0 (where XTy denotes the divergence

in the Y-coordinate system). But this will occur only if the coefficients

Bp, q and Cp, q satisfy the condition"

2ip Bp, q + b_ Cp, q
L 0 cos

=0

Since the problem is linear, it is only necessary, as explained in section

3.4.2. 1, to calculate the flow field generated by a single harmonic

_ = [(iAp, q + JBp, q)COS _ _( L0q2ipbc°s u Bp,q sin

(2_iPY2)J'(L 0 _:os _')
e (5-18)

This disturbance pattern is a _eneralizatiou of the one considered in sec-

tioa _. 5. I. 3. 5. As in that :%ec[iun. _t is a_:kin _unvenient to express _he dis-

turbance velocity in terms ,ff a coordin_t_ _wtem 7 fixed to the blades. We
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Figure 5-3. - Cascade in y'-coordinate system.

choose a typical blade, individuated by means of a subscript 0, and suppose

that the origin of the coordinate system is centered on the root of this blade

(as shown in fig. 5-3). Then the coordinate transformation _ -- y is the

same as that in section 3.5.1.3.5, and hence Y2 is related to the _'-

coordinates by equation (3-121). Inserting this equation into equation (5-18)

and using equations (5-15) and (5-17) to simplify the result show that

u"_ =[(_Ap, q+3Bp, q)COS _qY3-I( 2ipb B sinC-_) ]/_"_) L0q cos v P' q ,

ip_[(yl+y 2 cot #)/Ur-T ]
x e (5-19)

(where the unit vectors I, J, and t?: are still oriented in the F-coordinate

directions). The orientation of the blade row in the _'-coordinate system is

shown in figure 5-3. In these coordinates the blades are stationary and paral-

lel to the mean relative velocity U r. They are subjec[ed to a.,_ unsteady gust,

given by equation (5-19). Since the amplitude of this gust is assumed to be

smal! compared with Ur, the flow field in this coordinate system satisfies the

linearized equations (5-1)and (5-2)(with U replaced by U. in Dn/'DT).
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As in section 3.4.2. I, itis again convenient to explicitly separate out the

disturbance velocity by putting

: + (5-20)

where _ is sometimes called the scattered velocity. Then since _'_ is so-

lenoidal and satisfies equation (5-7), the scattered velocity _ must itself
5

satisfy equations (5-1) and (5-2). Thus,

D0_
P0 - -Vp (5-21)

D7

1 D0P

P0C2 D_-

=-V. _ (5-22)

Since the flow is assumed to be inviscid, we impose the boundary condition

that the normal velocity

]

(where j is the unit vector in the Y2-direction) vanish at the surface of the

blades. Then inserting equation (5-19) shows that _ must satisfy the bound-

ary condition (figs. 5-2 and 5-3)

t ttqy_ ipi][(Yl+mscot p)/Ur-7 ] _ 2 ms? < re=O, +1, ±2,w 2 = -a os b--_e for - < Yl - - -

LO<Y3 <b fl

(5-23)

5Althoughit might now appear that _ is the a,:_,lstic _,c_ocit, ielfn.:_l _n sect!on

5. 2, it will be seen subsequently that it contains a vortical part associated with the

blade wakes.
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a-- -Ap, q sin # + Bp, q cos p

and, as illustrated in fibre 5-3, s is the gap distance measured normal to the

chord, st is the stagger distance measured parallel to the chord, and c is

the chord length.

We must also require that the normal velocity vanish on the walls at

Y3 = 0,b. But since (by construction) u'_o already satisfies this requirement,

must satisfy the boundary condition

w 3 =0 at Y3 = 0, b (5-24)

Thus, the problem has been reduced to finding an outgoing-wave solution

to equations (5-21) and (5-22) which satisfies the boundary conditions 6 (5-23)

and (5-24). However, as explained in section 3.4.2. I, we must require that

the solutions satisfy the Kutta-Joukowski condition at the trailing edge of the

blades. And as a consequence, allowance must be made for a trailing vortex

wake. The continuity of pressure across these wakes suggests its adoption as

the dependent variable. Then, since equations (5-21) and (5-22) are special

cases of the first two equations (1-13), we can follow the procedure used in

chapter 1 to eliminate the velocity and obtain the wave equation

i D02p _ V,2p = 0 (5-25)

c 2 DT 2

It follows from the Y3-component of equation (5-21) that the boundary condi-

tion (5-24) can be replaced by the condition

_P = 0 at Y3 = 0, b (5-26)
0Y3

6The effects of the vorticity generated by leakage at the blade tips is being neglec-

ted. The inclusion of this effect would introduce unsteacty crossflows (in the Y3-
direction) with u considerable increase in compli_'ation. There is some _.\]_rim,_ntal

evidence to indicate that the elimination of tip leakage has little effect on the sound pro-

dueed by fans.
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And since the pressure is entirely associated with acoustic motion, we require

that

p -- Outgoing-wave solution as Yl - -_

The w2-component of the velocity, which enters through the boundary condi-

tion (5-23), is related to the pressure by the Y2-component of equation (5-21).

5.3.2 Reduction tO Integral Equations

It can be seen by inspection that the solutions to equation (5-25) and the

Y2-component of equation (5-21) which satisfy the boundary conditions (5-23)

and (5-26) must be of the form

p = -P0UraP(Yl, Y2)e -*¢°T cos

w 2 = -aV(Yl, Y2)e -lwT cos

where we have put

U 0
_-p_=p--

R 0

and P and V are determined by the equations

p2p+ _2p+ 2i _' M r_+ P=O

(5-27)

(5-28)

(5-29)

(5-30)

_P _ iw _ MrM r
aY2 aYl

(5-31)
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with die relative Mach number M r defined by

U r

Mr=

c O

(5-32)

The boundary condition (5-26) is automatically satisfied, and the boundary

condition (5-23) becomes

iw(Yl+ms cot /z)/U r I y2 = ms l

V= e for m = 0, ±1, +2, . . .

< Yl 2

(5-33)

At this point, it is convenient to assume that co has a small positive im-

aginary part which will be set to zero at the end of the analysis. The effect is

to replace the usual outgoing-wave requirement at infinity by the requirement

of boundedness. It corresponds to having a small amount of damping [n the

system.

It is shown in appendix 5. A that the outgoing-wave solution of equations

(5-30) and (5-31) which satisfies the boundary condition (5-33) is given in

terms of the dimensionless Prandtl-Glauert coordinates

by

V(_, _1) -

idr4 /__

Yl Y2
- , q =_ 13r

¢ fi

-i(o_+MrK) _
Mrf0(a) ye

K+Mra [ -r_+( I/2)A + 7)y+(i/2)A _]

e e do_

sinh 1 a sinh 1 a
2 + 2

1,.

for 0 _< q \ --
¢

(5-3,4)
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where the function fO(OO is the solution of the coupled integral equations

-i(K/Mr)fi2r_
l=e lira V(_, n)

rr-0

oO

i_ r fo__(_a! -i [cv+(K/Mr)]_

e
M r

S#rY
y sinh

c

cosh- - cos +

c

dot

for
2 2

 5-35)

and

f0((_) = I /'/I/2 [p]ei(_+MrK)_ d_

2rt J-I�2

(5-36)

which causes the jump [P], in the pressure 7 function P across the blades,

to vanish at the trailing edge (_ = 1/2) of the m = 0 airfoil. The functions

A+(_) and ),(a,) are defined by

,x±(c_) = i + + _ (5-37)
c

7(or)=_ 2_ K 2+ K 2q (5-38)

where the branch of the square root is chosen so that its real part is always

positive. The parameters fir' K, Kq, and F which appear in these equa-

tions are defined by

7Notice that these equations simultaneously determine the two unknowns [0(c_) and
[ P(_) ].
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_r = _/I - M 2 (5-39)r

K = wc _P_C _ PU0c

2 2
c0fl r c0_ r 32rR0C0

(5-40)

and

where

Kq= rrqc

s t
F = cr + MrK -

c

K + 2r cot

M r c

_=K___fl +scot

M r c

_0 s t=--( +scot u)

U r

(5-41)

(5-42)

(5-43)

is called the interblade phase angle. Finally, outside of the range of 77 for

which equation (5-34) is defined, the solution can be determined from the

periodicity condition

V/_ +mst ms r) im_
--, _ +-- i_ = e V(_, _7)

c c

(5-44)

McCune (ref. 2) carried out a steady-flow analysis for a fan in an annular

ciuct. He also treated transonic and supersonic flows.

5.3.3 Solution of Integral Equations

In order to complete the solution, it is necessary to solve the coupled in-

tegral equations (5-35) and (5-36) for f0 and [P] subject to the Kutta eondi-
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tion

[p] : 0 at _ : 1 (5-45)
2

This has been done for the two-dimensional case (corresponding to Kq = 0) by
Lane and Friedman 8 (ref. 3) and more recently by D. S. Whitehead (ref. 4).

The method used by these authors consists of expanding the pressure jump [P]

across the blades in the trigonometric series (commonly used in both steady-

and unsteady-thin-airfoil theory).

: I cot (_)[P] + _ A m sin m8

m=l

where

cos O = -2_

This expansion ensures that the Kutta condition (5-45) is automatically satis-

fied. When it is substituted into equation (5-36), the various integrations can

be carried out and an expansion of f0(a) in terms of Bessel functions is ob-

tained. Amd when this series is in turn substituted into equation (5-35), an

equation for the expansion coefficients A n (which can be solved by collocation

methods) is obtained.

The problem can also be solved by combining equations (5-35) and (5-36)

into a single integral equation for the weighed pressure jump

g(_)= [Pie -i(K32rlMr) _ (5-46)

Thus, substituting equation (5-36) into equation (5-35) shows (assuming the

order of integration can be interchanged) that

Bin fact, the method used in appendix 5. A to obtain the solution is a generalization

oC _he method developed by Lane and Friedman for the two-dimensional problem.
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I/21 = 3t'(_ - _')g(_')d 4'

"-i/2
(5-47)

where the kernel function 3¢(_ - 4') is given by

QO

S_r7
-i [at+(K/Mr)](_ - _ ' ) y sinh

_(_ - 4') = i#_r- e c dot

SfirY (F -_)

47r _ + _ cosh _ - cos +
Mr c

(5-48)

Since the integrand in equation (5-48) goes to +1 for large values of e,

the integral does not exist in the usual sense and must be treated as the Four-

ier transform of a distribution. 9

The effect of the various airfoils in the cascade on the airfoil at V = 0 is

accounted for by the term

S/3r7
sinh

C

cosh _ - cos +
C

Hence, if this term were put equal to unity in equation (5-48), equation (5-47)

would become the integral equation for the force on an isolated airfoil. In

order to express equation (5-48) in terms of convergent integrals, it is con-

venient to subtract out the single airfoil contribution to obtain

9A very clear and concise discussion of the ideas involved can be found in Lighthill

(ref. 5}.
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oo

-i [_( K/Mr)I( _ -_ ')

_f(_ _ _,) = _i_r e

4_ K_+

M r

7' dc_

-i[_+(K/Mr)](_- _')
+ __if_r e

4n K_K__+ ol

M r

¥

cosh -- -

sinh s_r7

c

COS +

C

- d_

The first integral can be computed from equation (5-B1) in appendix 5. B.

Since the integrand of the second integral goes to zero exponentially fast as

_-+_, this integral is absolutely convergent and hence represents a bounded

function of _ - 4' However, the results of appendix 5. B show that the first

integral is singular at _ - 4' = 0. In fact, it follows from equation (5-B2) that

.at can be expressed in the form

_:¢.(_ _ g,) = __/3r(____+ __iK ini_ - 4'1)+A_(_ - g')
2_ M r

(5-49)

where -._ denotes a nonsingular function. Thus, as is usual in thin-airfoil

theory, the kernel of the integral equation (5-47) has a nonintegrable singular-

ity of the type (4 - _,)-1. This equation is, therefore, said to be singular and

it can be shown that the integral must be interpreted as the Cauchy principal

value. Because of this singularity, there is just enough arbitrariness in the

solutions of equation (5-47) to satisfy the Kutta condition (5-45). However, we

must then allow g(_) to have a square-root singularity at the leading edge

= -1/2.

By expressing the kernel function in the form (5-49), Fleeter (ref. 6) ob-

tained a numerical solution to equation (5-47) for a two-dimensional disturb-

ance.
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It should be noted that, since the branch points associated with ) cancel

in the integrand of equation (5-48), this function has only simple poles in the

complex or-plane. But because the integrand does not vanish at infinity, we

cannot use Jordan's lemma directly to evaluate the integral. However, if in-

stead of taking the limit 77 - 0 in equation (5-35) before this result is used to

derive equation (5-47) we keep 7/ finite, we find that the kernel function can be

written as

oo

__ a2 -i [a+(K/Mr)](_- _' )
3tl_ - _') = ifir lim -- e

8_ 7?-0 a_/2 (_rr + _)_

_q _ e(1,/2)A+ (I/2)A_ ]

x ...... e U7 e doz

/ sinh ! A sinh I A

L 2 + 2 -

Since the integrand is an even function 10 of 7, it still possesses no branch

points even when T/ is finite. But now it behaves either like

or like

1 e-i c_(_-_'-T/s?/Sl3r)

2

as I c_] - _ and Jordan's lemma can be applied to evaluate the integral in
11

terms of its residues. The contour must be closed in the upper half-plane

10As can be seen by replacing -/ by -7.

llThe location of the poles is discussed in the next section.
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when

< _' (5-50)

and in the lower half-plane when 12

(5-5z)

Two different expressions are obtained depending on whether condition (5-50)

or condition (5-51) holds. And since there are infinitely many poles in both the

upper and lower half-planes, these expressions are infinite series. The re-

sulting series expansion of the kernel function turns out to be identical to the
Q

one obtained by Kaji and Okazaki (refs. 7 and 8), who used an entirely different

approach based on an ingenious application of the Poisson summation formula.

The Kaji-Okazaki series is rapidly convergent whenever _ - _' is bounded away

from zero and provides a convenient method for calculating the kernel function.

5.3.tl Acoustic Radiation

From the point of view of acoustics, our main interest is in the pressure

field at large distances from the blade row. We shall show that the solution in

this region is determined by the singularities which occur in equation (5-34)

when the small imaginary part of K is allowed to approach zero. These

singularities are the simple poles of the integrand which approach the real

axis when fl_K - 0. There is one such pole at the point

K

M r

while its remaining poles occur at the points where

A±=i2nrr for n=0, ±1, +2, . .

12No results are obtained for _' < _ < _' +rlsi:,/S#r.
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It follows from equations (5-37) and (5-38) that the latter points are given by

cs _ SBr _/_CFn_ 2 for n= 0, _-1, +2

(5-52)

where we have put

and

d*= _/(sl_) 2 + #2rS2 (5-53)

r n = r' - 2nrr (5-54)

The plus sign in equation (5-52) refers to the poles lying in the upper half-

plane and the minus sign refers to those in the lower hal.f-plane.

These poles will approach the real axis when _m K - 0 if

c___t2 2 K 2+ Kq
<

In this case, equation (5-52) can be written as

(5-55)

± cs ? S_r 2 K 2 Yn
ct n = -F n _ ± ..... g sin X = (5-56)

(d_') 2 d "}" q }xd* J n

where in this equation _-- denotes the positive square root,

K-_/K 2 - Kq2 (5-57)

and ,tn are always rea_. Then it follows from equation (5-38) that
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We can simplify the notation somewhat by introducing the angle

and the stagger angle

in the Prandtl-Glauert plane.

sink += -cos 8nn

Hence, we can put

s t
Xt = tan-1

sti r

Then equation (5°56) bdcomes

sin Xt + cos Xt sin 6 n = sin(-x t + 6n)

X ± = -X t ± 5 nn

Upon separating out the singularities which occur in its integrand when

.]_ K - 0, equation (5-34) becomes

v(_, n) =

(5-58)

(5-59)

(5-60)

_ _M r n=m 1

362

where D({ 7, a) possesses no real poles as .qm K - 0; A and B ± are the
' n

residues at the poles at -K/M r and a_, respectively; and m 1 and m 2 are

the minimum and maximum values for n for which 'he inequaiity (5-=.5)

holds. Evaluating the residues and using equations (5-56) to (5-60) to simplify
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the results show that

Bn_(_, 7/) =

iflrMrCK cos2X_e-i[@ sin yne+MrK)_-_: (cos Xne)??]

(5-81)

and

A(_, 7/)= h(_)e (ikfl2_)/M (5-62)

Now it follows from the theory of Fourier transforms that D(4, _7, a) does

not contribute to the integral in the limit as I_l - _o. The remaining terms

can be evaluated by closing the contour in the appropriate half-plane and using

Jordan's lemma to set the integrals equal to 2hi times the sum of the resi-

dues. Hence if _ << 0 (corresponding to a position far upstream),

v- (5-63)
n=m 1

and if _ >> 0 (corresponding to a position far downstream),

V ~ 2hi A(_, _) + 2hi

m 2

2
n=m i

Bn(_, _) (5-64)

The term A(g, 7?) represents the effects of the wakes and therefore contributes

only to the vortical part of the solution. In fact, it can be seen from equations

I5-62) and (5-A8) that this term makes no contribution to q, and therefore (in

view of eq. (5-A2)) no contribution to the pressure P. Equation (5-61) shows

that the remaining terms in equations (5-63) and (5-64) satisfy the periodicity

condition (5-44). Hence, these solutions apply for all values of ,-7, a.nd no_ just

those in tae range 0 ( q- S_r,JC where equation ,',5-34) ao_ds. _'inail,,' ._.sin_
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these results in equations (5-A6), (5-A2), and (5-27) shows that the asymptotic

pressure field is given by

m 2

P ~ Pn as 4--_

n=m 1

m 2

P~ E Pn as _-+_

n=m 1

• (5-65)

where

±
Pn 7rc cos k +

_=- nf0(K sin k_)

P0aUr d _ sin 6n

-i[WT+(K sin Xn_+MrK)[-K(cos Xn_)_7]
xe (5-66)

Thus, at large distances from the blade row the pressure field can be ex-

oressed as the sum of a finite number of the terms defined in equation :_-_6'_.

And only the ,p_

ute to this sum.

In fact, let

for which the cutoff condition (5-55) is satisfied will concrib-

t
X - tan- I s

S
[5-67)

denote the stagger angle.

364

Then introducing the stationary

Xl= Yl cos X- Y2 sin X

x2 Yt sin X+Y2 cos X- U

x3 = Y3 J

(5-68)
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×2

Yl

Figure5-4. - Duct-orientedcoordinates.

coordinate system (see fig. 5-4) into equation (5-66) and using the results of

appendix 5.C show that

+
Pn 1

P0aUr 2

e ' + nB]-i [nB_T+(nB- p) (x2/R0)+x 17q, p,

x cos(_qx3_ c (nB-p cos X-y+ sin Xl2_f0(_ sin X;)
\ b / kq, p, nBd\ R 0 q,p,n.B '

where

Mk 0 kq, p, nB
7± - ±

q,p, nB
132 3 2
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k0 = nB_.___a+ M(p - nB) tan

c o R 0

and

Uoo

M--- cos

c O

is the Mach number of the oncoming flow in the axial (perpendicular to the

blade row) direction and d = s t ) + s 2 is the interblade distance. Thus. Pn

is simply a wave which propagates down the duct in the Xl-direction with a

+ while it moves in the transverse direction (x 2-propagation constant Vq, p, nB
direction) with the phase velocity

It is easy to see from the results of appendix 5. C that the condition (5-55)

does indeed correspond to the cutoff condition

[\Ro/

for this wave. Thus, for any given spatial harmonic of the disturbance field

(characterized by the indices p and q), the sound field consists of all those

blade-passing-frequency harmonics whose frequency is above the cutoff fre-

quency for the p, qth mode. These results are qualitatively the same as

those given in section 4.3.2.2 for a circular duct. The principal difference is

that in the present case there is a mean crossflow c0M tan v in the trans-

verse direction in addition to the axial velocity cgM. In _act. since _qua-
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f 4- _:
(5-70)

and since a[P]P0U r sin X is the amplitude of the thrust force per unit area

acting on the blade and aEP]P0U r cos x is the amplitude of the drag force per

unit area, we see that this equation is indeed similar to equation (4-30).

5.3.5 Behavior of Blade Forces

The resemblance between equations (5-69} and (5-70) and equation (4-30)

is not coincidental since the former equations are precisely the results which

would be obtained if the acoustic analogy approach used in chapter 4 were ap-

plied to the infinite cascade configuration analyzed in this chapter. The new

feature which is introduced by the present approach is the integral equation

for calculating the normal force per unit area EP] acting on the blades. In the

last chapter we resorted to using a single-airfoil two-dimensional incompres-

sible flow model to calculate the blade forces. When these forces are ob-

tained by solving equation (5-47), the effects of compressibility and of the mu-

tual interference between the various airfoils in the cascade are accounted for.

The compressibility effect is particularly important near cutoff, where it

causes the blade forces to vanish (ref. 4). As a result of tiffs the radiated

power does not become infinite at cutoff as predicted by the incompressible

flow analysis in chapter 4.

The exponent Ln the integrand of equation (5-70) corresponds t_ _he _'._ria-

tion in retarded time along the blade, ff we neglect this variation (as is done

in chapter 4), the integral reduces to the response function (see section

3.4. 2.2)

13For real compressors the flow at large distances from the blade ro_ _iii be ori-

ented molly in the Xl-direction. A possible way of compensating for thi_ is to set

v = 0 in k0 while leaving it unchanged in the integral (5-70). Thi_ can he ju._tified by
•_.,-_,.,in__ that the termz in the integral, being associated _ith the local unstea, iv lift, are

relativeiv unim]ucnced by Lhe tut'zzing of _/lc _qow in _l_c .:::i:z] ,1i re_:',-io_z. '".> m:'_ _i(cc_
qf this turning is to eliminate the crossflow in the propagation terms of cq. (5-(;9).
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F _ 1 #1/'2
cP0Ura_ = 'J - 1 ,/2 EP]d_

The variation of this quantity with the various parameters which appear in the

kernel function (5-48) should give some indication of their effect on the radi-

ated sound. It can be seen from equations (5-C3), (5-C4), (5-40), and (5-41)

that these parameters can be taken as the transverse wave number _q/b, the

relative Mach number Mr, the interblade phase angle _ = 2_p/b, the stagger

angle X, the solidity c/d, and the reduced frequency

2M r 2U r

The response function was calculated by Fleeter (ref. 6) for various values of

these parameters in the range of interest for compressors. Typical results

taken from his paper are shown in figure 5-5. Also included is the corre-

sponding incompressible flow solution. The figure shows that compressibility

effects can change the response function by more than a factor of 2. We an-

ticipate that its effect on the acoustic pressure fluctuations will also be of this

magnitude.

Notice that, as the Mach number M r increases, the magnitude of the

fluctuating lift first increases toward a maximum and then decreases rapidly

to zero. It passes through zero at the Mach number where the blade passing

frequency is exactly equal to the cutoff frequency for the lowest mode. But i[

is pointed out in section 4.3.5 that the expression for the radiated power has a

zero in its denominator at this frequency. The vanishing of the blade forces

creates a corresponding zero in its numerator, which serves to keep the acous-

tic power finite. (Of course, this would not occur if aJl incompressible .,low

analysis were used to predict the blade forces. } This effect is an example of

how a sound field can exert a powerful back reaction on its source (the fluctu-

ating blade forces).
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Solidity,

\ I c/d • 1/.5

Mean cas .5

inlet_'_T_-\ '\.sII
numOer, " _" L"5 _8-

M r _ ,,,-

I I i
-1.5 -1.0 -.5

-- g Interblade 2.0

f _.,_,,' phase an_le,

.85 / _(;:IBO"

.7 \

M

t I t
-1.5 -I.0 -.5 0

Real F/cPoaUrtr

(a) Solidity effect on response function with mean cas-

cade inlet Mach number Mr as a parameter. Inter-
blade phase anqle, o. 180°.

(b) Interblade-phase-angle effect on response function
with mean cascade inlet t¢_ach number as parameter.

Solidity, c/d, 1.

Figure 5.-5. - Effect of compressibility on response function. Stagger angle, X, 0°; reduced frequency, _cl2Ur,
0.25; transverse Math number, _'q/b, O.
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APPENDIX 5.A

SOLUTION TO CASCADE PROBLEM

In this appendix we shall obtain an outgoing-wave solution to equations

(5-30) and (5-31) which satisfies the boundary condition (5-33).

In order to transform this problem into an equivalent (and somewhat more

familiar) stationary-medium problem, we introduce the dimensionless

Prandtl-Glauert coordinates

and the new dependent variable

Yl
_=--

C

,7 = -- __
c " J

(5-AI)

iMrK_
= Pe (5-A2)

where

K - we pf2c PU0c= - (5-AZ)

2 2 ;32rR0C 0c0# r c0/3 r

and

i 2 tS-A4)/3r = • M r

Then equations (5-30), (5-31), and the boundary condition (5-33) become

a2,t, a2_ _ (K 2 ,,'2_I,

a_ 2 an2

: O :5-A5_
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/2\

8 e-[iflrK/Mr) _ -iMrK_ d_
V = -3re --

8,_ dq
(5-A6)

(iK/Mr)fl2r[_+(ms_f /c)cot p]
V=e m=0, +1 ....

(5-A7)

where

(5-A8)

Notice that equation (5-A5) possesses a separation-of-variables solution of the

form

e -ia_-_ (5-A9)

where the branch of the square root

2}' = a 2 - K 2 + Kq

is chosen so that its real part is always positive (in the complex ,_-plane).

order to apply this solution to the present problem, it is convenient to intro-

duce a coordinate system

Um = _ ---mS3r _

ms[

e

[i1

(5-A10)
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which for each integer m = 0, ±1, =2, . . . has its origin on the mth blade.

Then superposing the solutions (5-A9) with respect to the separation param-

eter o: shows that equation (5-A5) possesses the outgoing-wave solution

sgn07m) F fm (°:)e-i_m- 17)m IY do: (5-All)
_I'm(_' q) = 2

where fm(_) is an, as yet, undetermined function and

II for x > 0

sgn X

1 for x < 0

This solution possesses a jump discontinuity

-i_ m
[_m(_)] = fm(Ot)e dc_ (5-A12)

across the line _2= (ms/c)_ r passing through the mth blade. Since the

boundary conditions can only be satisfied if the pressure function P is iis-

continuous across the blades, we seek a solution in the form

_I,= _ @m (5-A13)

m=-oo

of a superposition of the soiutlons (5-Ali). Then the jump r-,),l in ,I, -c ......

the m th blade is given by [_'m] alone. Hence, it follows from equation

(5-A2) that the jump [P] in the pressure function along the line 7i = (ms/c),_ r

is
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- iMrK g -i C_m
[P] = e fm(Ot)e do, (5-A14)

The continuity of pressure along the line _? = (ms/c)fir in the region in front

and behind the blades will be accounted for in the subsequent analysis.

Since the upwash velocity w 2 vanishes at _ = _oo, equation (5-A6) can be

integrated to obtain

V= -13r e(ifl2K/M r) (5-A15)

Then substituting equation (5-All) into equation (5A-13), inserting the result

into equation (5-A15), interchanging the order of integration, and integrating

with respect to _ show that 14

Iv)
_r__j -iMrK_ Mr:Y

V = e fm(C0e -(i°l_m+

2 K+Mr_
- m=-°o

dot

(5-A16)

And, since the boundary condition (5-A7) can be written as

ms _ ms fir 1 (iK/Mr)_2r_m im_
+ , = e e

c c

for m = 0, +1, ±2, . .," _ 1< _m <1 (5-A17)
2 2

where

14Where we use the fact that the imaginary part of o.., and hence of K, is slightly

positive to show that the integrated term vanishes at minus iniinity.
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M r c U r

+ s cot U) (5-A18)

is called the interblade phase angle, we can ensure that satisfying this condi-

tion on the m = 0 blade will also cause it to be satisfied on the remaining

blades if the functions fm can be related to f0 in such a way that

V( _ + m'_s'c _7+ m____Scfir/ = eima V(_, _)
(5-A19)

We shall now show that this occurs when

fm(_) = eimrf0(_ ) (5-A20)

where

1_=a+MrK - +_cot
c M r c

(5-A21)

To this end, insert equation (5-A20) into equation (5-A16) to obtain

/ Zi_ r _ MrYfO(a) -i(a+MrK) _ im_r+(as*/c)]-{_m t'z
.... e " e

V(_, 77) = -_- K + Mra
I'll= - _

dol

{}{3

_ iflr Mr_fO(_)

- T
im(__i(a+MrK)_m_ Iqm [Y

m_=oo

d_ (5-A22)

But the fact that
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t ms $ ms 3r)
+--, r]+--

C C

i_r /=2 MrTfO(a)
K + M rot n: -=°

eina-i( _+Mr K)[_ -(n-m)(s _/c)]- 17/-(n-m) (s/c)_3 r 17
dot

/ Z• ipa_i(cr+MrK)_ p- lr/p !Y: l13__f,r Mr.._Yf0(oz_____)eima e dcr

2 K+Mr_

= e ima V(_, V)

proves the assertion.

The remaining condition which must be imposed on the solution is that the

pressure jump _] given by equation (5-A14) goes to zero both in front of and

behind each blade, But inserting equation (5-A20) into equation (5-A14) shows

that if this condition holds along the line 7/= 0 through the m = 0 blade, it

will also prevail for all other blades. Hence, the problem will be solved if

the function f0(ol) in equation (5-A22) can be chosen in such a way that the

boundary condition (5-A17) holds along the m = 0 blade and the condition

_] = 0 holds along the remainder of the iine _7= 0. However, before showing

that this is indeed the case, it is convenient to simplify equation (5-A22).

Thus, it follows from the geometric expansion

cO

Ezm- 1 for Izl<l
m=0 1 - z

that for 0<_ 7/< S]3r/C
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eim(F+_s?/c) - 17/m]Y : e-_7_

-iIF+( os _/c)]-S/3rY/C
l-e

i[C+(_sVc)]-S#r_/C
eD7 e

i It+( _s _/c)] -SBrY/C
1-e

m - e

sinh _iA
2 +

where

-- i + + _ (5-A23)
• A+ c

Hence, inserting this result into equation (5-A22) shows that the upwash

velocity is determined by

Mrf0(_)_e-i(c/+MrK) _ [e "qy+(1/2)A+ _ er/Y+(1/2)A.J d_
K+Mr_ i s_nhl_ sinh-lA_2

s3 r
for 0 __. 7? < -- (5-A24)

C

For the remaining values of 7, V(_, 7/) can be determined from the periodicity

condition (5-A19).

inserting equation (5-A24) into the boundary condition (5-,.._ '"'_ with m = 9

shows, apon using the addition formulas for the hyperbolic functions to sire-
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plify the results, that

-i(K/Mr)_2_
l=e

oO

_ i3 fo (_) -i [_+(K/Mr)]_

M r

Stir7
sinh -_

C

S_r7
cosh--- cos

C

do/

for --1< _ <i
2 2

(5-A25)

On the other hand, equation (5-A14) (with m = 0) shows that

_o _i(_+MrK)_ .[p] = f0(a)e d_

But since LP] = 0

obtain

for I_l > (1/2), we can invert this Fourier transform to

f0(_ ) = 1 /'/1/2 [p]ei(O+MrK)_ d_

2_ j_ 1/2

(5-A26)

Thus, the boundary conditions a.long the m = 0 blade will be satisfied pro-

vided the function f0(_) in equation (5-A24) is a solution of the coupled inte-

gral equations (5-A25) and (5-A26). In order to ensure that _he Kutta condiLlon

is satisfied at the trailing edge, we must require that [P] = 0 at _ = 1/2.
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APPENDIX 5.B

EVALUATION OF SINGLE-AIRFOIL INTEGRAL

It is shown in tables of Fourier transforms (ref. 9) that

_i #_2_ Ki d@

where H(01) denotes the Hankel function of the first kind. Hence,

15

_ _@+(K/Mr)](___, )

i/3 r e

4_ ._g..K+ st

M r

7d(_

/_-_')-(iK/Mr)X a2 (K_x--_+y 2)
i/3rlim e __ H(0I) dx

= 4--_y-0 ay2

But using the identity (ref. 10)

- 2
_Y

a 2 H{01)(K x2__+y2)-_2H(01)@_ )

_x 2

and integrating twice by parts show that this can be written as

15K iS defined by cq. (5-57).
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-i [oz+ (K/Mr)] ( _ - _ ')
igr e

4_ --K-K+ oz

M r

d_

f

Eifl r - (K/Mr)(_- _ )

4
sgn(_ - _')H_I)(KI_ - _'1) +i K H(01)(KI_ _ _'i)l

M r J

+ _2-K2_limM2r/y-0J-_/_-_:e-i(K/Mr)XH_l)_ x2__+y2)dx 1 (5-BI)

Since the integral remains bounded as _ - 4' - 0, using the small-argument

asymptotic representations for the Hankel functions (ref. 11) shows that

oo

- i ( o_+K/Mr) ( _ -_ ')
i_r e

4_ K+

M r

dee

+ o(1) as _-_'-0 (5-B2)
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APPENDIX 5.C

EVALUATION OF TERMS IN DUCT COORDINATES

Since (figs. 5-2 and 5-3)

U 0 U r c0M r

sin p cos v cos(x- p)
(5-cD

and since the number of blades is related to the interblade distance d by

(fig. 5-4)

2rrR 0
B - (5-C2)

d

it follows from using equations (5-29) and (5-67) in the definition (5-43) of the

interblade phase angle that

= pd = 2_p (5-C3)

R 0 B

And inserting this into equation (5-42) implies

F = 2_p + Mr K d sin X (5-C4)
B c

e- AThen equation (o-5=) becomes

Fn = d__ (p _ nB) + MrK d sin ,k
R 0 c

and equation (5-59) implies

,:<cos on (p - nE) _- MrK sin,XI

(5-C5)

(5-C_;,
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K sin 6
n

K2 _ c (p _ n_B) + MrKsin (5-C7)

It follows from equation (5-53) that

I_l 2 2 cos2x=l-M r (5-c8)

and it can be seen from figure 5-2 that

c0M r cos X = U_ cos v (5-C9)

c0M r sin X+ U_ sin v = U 0 (5-C i0)

Hence, it follows from equations (5-40), (5-41), and (5-57) that

A c
fir K sin 6n : --_ kq, P, nBtd

(5-cll)

where we have put

kq, nB-=_k_- fi2 I(nB - Pl 2 21p. Roj (5-c12)

nB_ + M(p - nB) tan v
k 0 -

c o R 0

(5-C 13)

fi= _/I-M 2 (5-C 14)

and
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U_ o

M = M r cos X = _ cos v (5-C15)
c o

is the axial-flow Mach number.

Upon using equation (5-60) and the addition formulas for the sines and co-

sines, the exponent

E =0_T+ (K sinkz K1 (c _)n +Mr _- K osk 77

which appears in equation (5-66) can be written as

E = -K(_ sin X_ + r_ cos X_)cos 5 n + K(_ cos Xj" - ?7 sin X_)sin 5n + KMr_ + _

But the blade spacing d and the stagger angle X are related to the Prandtl-

Glauert plane blade spacing d t and stagger angle X? by

d sin x = dJ sin X"_

/fir dcos X = d t cos X?

(5-c 16)

Hence, we can use equation (5-68) to eliminate the dimensionless variables

_, 7/ to get

E =-- MrKsin X--- 1 - M r
c d j"

+-- MrKCOs X--- M2 sin Xcos Xcos 6 n_= _3r sin

c d T "

+ _ + -- M r sin . m D

c co /

Kd U0 (1 - M r cos 2

d T c o

382



THEORIES BASED ON SOLUTION OF LIIiEAR,IZED EOLt_TIO_:S

And, it follows from equation (5-40) and equations (5-C6) to (5-C 11) that

( (c )w_" + K sint++M r _ - K os _ rj= nB_T +-- (nB - p) + lYq, p, nB
n R0

where

y+ _ i (Mko + nB )q, p, nB = -- b, q,
92

(5-C 17)

Equations (5-60) and (5-C 16) and the addition formulas for trigonometric

functions imply that

c cos _t±n cd
(_r cos X cos 6n -_ sin )_ sin 6 n)

But upon using equations (5-C6), (5-C7), and (5-Cll) this becomes

c cos X±
n 1

d _"sin 5n di32kq, p, nB

_2F c--_-(p - nB) + sin xlcos X
MrK

[ rLRo + Ckq P, nB sin Xt

And finally, substituting in equations (5-40), (5-CI), (5-C9), (5-CI0),

(5-C14), (5-C15), and (5-C17) shows that

c n _ c + sin X - cos
q,p, nB

d 1" sin 6n dkq, p, nB \ R0 /

(5-C 18)
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CHAPTER6

Effectsof NonuniformMeanFlow
onGenerationof Sound

6. I INTRODUCTION

The last two chapters were concerned with the generation of sound in the

presence of a uniform mean flow. However, real flows usually have substan-

tial velocity gradients in the vicinity of the source region. These gradients

can influence the acoustic impedance acting on the sound sources and as a

result can have a significant effect on the sound emission process. In the

acoustic analogy approach the sound sources are treated as if they are em-

bedded in either a stationary or uniformly moving medium. Hence, the ef-

fects of nonuniform flow must be "modeled" by adjusting the source term in

some manner. Since there is no systematic procedure for accomplishingtt_is,

'_t might be helpful to develop a moving-medium wave equation to describe t?÷

sound emission process.

One possible way of obtaining such an equation is by extending the tinear-

ized acoustic analysis developed in section 1.2. Thus, it is" shown in sec-

tion 5.2 that while the generation of sound through surface interactions is

accounted for by the linear terms, the generation of sound by the volume

quadrupoles depends upon the second-order nonlinear coupling of the acoustic

died _,',r)t't:,;t_kt modes. Hence:, if the first-order perturbati,m, oquati,,_s ,:i_:v,: l-

oped in section 1.2 were extended to next higher order, all the interactions

involved in the sound generation processes should be included. This aporoach

was developed by Chu and Kovasznay (ref. 1).
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However, instead of pursuing this course, we shall attempt to extend the

ideas of Lighthill by putting the full nonlinear equations into the form of a

moving-medium wave equation. Equations of this type were derived by Phil-

lips (ref. 2) and Lilley, 1 and much of the material in this chapter is based on

their equations. In developing such equations, in which more of the real fluid

effects are included in the wave operator part of the equation and less in the

source term, we are actually moving away from the acoustic analogy approach

and toward the direct calculational approach developed in chapter 4.

6.2 DERIVATION OF PHILLIPS' EQUATION

The continuity and momentum equations given in section 2.2 can also be

written as

where

tvj1Dp+_= 0

#9D_- tyj

Dvi _ 1 a..._p_p+ 1 _eij

DT P _Yi p 0yj

(6-1)

(6-2)

D _
_-----+ Vj

DT _ cyj

(6-3)

denotes the substantive derivative. We shall, for simplicity, limit the dis-

cussion to the case of an ideal gas. Then

p = pRO (6-4)

de ," dO (6-51
V

1Fourth Monthly Progress Rep,,vt ,_n contract F-33615-71-C-1663. Appendix:

Generation of Sound in a Mixin_ I_{._i,,n l,c}{-khe{,d Aircraft Company, Marietta, Ga..

1971.

386



and

EFFECTS OF NONUNIFORMMEAN FLOW ON GENERATION OF SOUND

Cp = c v + R

where as before R denotes the gas constant; e denotes the internal energy;

O the absolute temperature; and Cp and c v the specific heats at constant

pressure and volume, respectively. Hence, the second law of thermodynam-

ics O dS = de + pd(1/p) can be written as

dp = 1 dp dS

p _,' p Cp

(6-6)

where

= Cp

C
v

(6-7)

is the specific-heat ratio.

In order to obtain an equation which has the form of a moving-medium

wave equation, we generalize the approach used in section 1.2 to derive the

wave equation (1-15) from the linearized continuity and momentum equations.

Thus, substituting equation (6-6) into equation (6-1) shows that

DII avi 1 DS
-- + - (6- 8)

D7 _Yi Cp D_-

where

H-lln p

PO

'_-9:,

and P0 is some convenient (constant) reference pressure. Then upon using

footnote 6 on page 17 in chapter 1, the momentum e,iua_i,m '6-2' _::r, be , ri'.-

ten as
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Dvi 2 _II i aeij
_ --: - C --+

D'r _Yi P _Yj

(6- 10)

The close resemblance between equations (6-8) and (6-10) and the first two

equations (1-13) suggests that we can obtain a moving-medium wave equation

if (as is done in section 1.2) we differentiate these equations and subtract the

results. To this end we take the divergence of equation (6-10) and use the

identity

to obtain

But applying the operator

a D = D 8 _vj a+____ (6-11)

_Yi D'r D'r 8Yi _Yi _Y)

D 8vi +_a c 2_=__+8II 8vj _v i 8 1 _eij

Dv ay i ay i 8Yi _Yi ayj 8y i p _yj

D/DT to equation (6-8) shows that

D2II D _vi D 1 DS

D_2 D1" _Yi D_ Cp Dv

And upon subtracting equation (6-12) from this result, we obtain Phillips'

equation

D2rI _ c 2 811 _ ?vj _v i (- 1 _eij + D i DS

D_ -2 _Yi _Yi 8Yi 8Yj 9Yi p _Yj D_- Cp D7

(6- 12)

(6- 13)

The left side of this equation is seen *o corrcspozd c:e_e!y *c tb?_t "¢ the

linearized moving-medium wave equation (1-15). The principal difference is

that the left side of equation (1-15) contains an additional term which repre-

sents the direct refraction of the sound by the mean flow. The left side of

equation (6-13) differs from that of Lighthill's equation _2-5_ mainly in Li_,a_ :he

time derivative 9/_" in Lighthill's equation is replaced by th_ _ubstantive
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derivative D/D'r in Phillips _ equation. Thus, Phillips' equation ought, at

least partially, to account for the effects of convection and refraction of the

sound. As in Lighthill's theory the terms on the right side are to be inter-

preted as source terms.

In fact, Phillips concluded that since "the terms on the left hand side of

[his] equation are those of a wave equation in a moving medium with variable

speed of sound, " the first term on the right side represents the generation of

pressure fluctuations by velocity fluctuations in the fluid, while the remaining

terms describe the effects of entropy fluctuations and fluid viscosity. How-

ever, as pointed out by Lilley 1 and Doak (ref. 3) this interpretation is not

strictly correct since the left side does not contain all the terms which appear

in a moving-medium wave equation even for a unidirectional transversely

sheared mean flow. As a consequence, the first term on the right side must

contain the remaining terms. For this reason, the latter term is not a pure

source term. Thus, in the special case of an inviscid, non-heat-conducting,

transversely sheared mean flow with a mean velocity U and a small fluctuat-

ing velocity _, the left side of equation (6-13) becomes (upon neglecting

squares of small quantities)

while the right side becomes

_u2 dU

_Yl dY2

Comparing this with equation (1-15) shows that (in this limit) the "source

term" in Phillips' equation actually contains a term associated witt_ the _)rop-

agation of sound waves.

6.3 DERIVATION OF LILLEY'S EQUATION

In order to obtazn an equation in which all the "propagation effects" oc-

curring in a transversely sheared mean flow are accounted for by the wave
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operator part of the equation, Lilley I derived a tnird-order equation analogous

to equation (I-20). Thus, applying the operator D/D-r to both sides of equa-

tion (6-13) shows that

__D _ 8vj 8vi _eij D 221l _8 c2 811 = 2_ D. __ D _ 1 _+ 1 DS

D_-_D--_ 8yi 8yi/ 8yi DT cyj D_ 8yi p 8yj DT2 Cp DT

And upon using equation (6-12), we obtain Lilley's ecluation

D \D 2  yi/ % ayi%
+ • (6-14)

where

_vj _eik _eij D 2 1 DS= 2 8 1 D _ 1 +

8y i 8yj p 8y k D'r _Yi p _Yj D 2 CpDT

represents the effects of entropy fluctuations and fluid viscosity.

Notice that when this equation is linearized about a unidirectional trans-

versely sheared mean flow, its left side reduces to that of the moving-

medium wave equation (1-20). Hence, at least in the case of parallel or

nearly parallel mean flows (such as those which occur in jets and axial-flow

fans), no inconsistency is obtained wtmn we interpret the right side as a

source term.

6.4 INTERPRETATION OF EQUATIONS

Lilley's, Phillips', and Lighthill's equations, being exact consequences

of the momentum and continuity equations, are all equivalent to one another.

The advantage of the former equations Jver Li_hthill's equation ',icsiz the

interpretation of the source term. Thus, Lighthill's theory of aerodynamic

noise (ref. 4) is an acoustic analogue theory in which itis necessary to some-

how determine the source distribution Ti! so that itaccounts not only for the

generation of sound, but also for such reai fluid effects as acoustic propaga-

tion anci refraction. However, {.i_the equations ?f Phillips and Lilley the re-
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fraction effects have, at least to some extent, been moved from the source

term to the wave operator part of the equation. They can therefore be calcu-

lated as part of the solution and do not have to be modeled as part of the

source term. For this reason Phillips' and Lilley's theories have been called

"true source" theories by Doak (ref. 3i. It is frequently asserted that all

real fluid effects will automatically be included when the source term Tij in

Lighthill's equation is measured experimentally. However, it is argued by

Doak (ref. 3) that the part of this term corresponding to the convection and

refraction effects is quite small compared to the part corresponding to the

actual generation of the sound and therefore any realistic measurement would

fail to detect the former. However, Doak concludes that even though these

terms are small they cannot be neglected. The reason he gives is that the

acoustic equations contain groups of terms of different classes such that

within each class there is almost complete cancellation of terms. A term can

therefore be neglected if it is small compared with other terms in its class

but not necessarily if it is small compared with terms of a different class.

This situation could result from the cumulative effect of refraction over large

distances. Of course, we cannot be sure that even Lilley's equation is of the.

correct form to properly model the sound generation process. In fact, the

first term on the right side certainly contains the acoustic part of the velocity

(since v i is the total velocity) and therefore represents effects other than

pure sound generation.

The price which must be paid for including _.he convection aria rezraction

effects in the wave operator part of the equation is a great increase in the

complexity of the solutions. In practice, this turns out to be a serious draw-

back, and to date only limited solutions of Lilley's and Phillips' e_!ations

have been found.

6.5 SIMPLIFICATION OF PHILLIPS' AND LILLEY'S EQUATIONS

Another disadvantage associated with equations (6-13) and (6-14) is that

the left sides of these equations involve the total velocity _" and net (as in the

case of the linearized equations in section 1.2) just the mean velocity. Thus.

these equations are in general nonlinear even if the source terms and the

mean flew are assumed to be known. However, in many cases 3z interest
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(e. g., sound generation in jets and aircraft engine fans and c,_mpressoz's ,, it

is reasonable to replace the velocity and the square of the speed of sound by

their mean values V i = Vi and c 2, respectively. In Phillips' equation the

former approximation amounts to replacing the operator D/D-r by the oper-

ator

D = _ + Vi_ (6- 15)
D_- _- _Yi

Thus, the sound which is generated by the unsteady flow in the vicinity of a

fan or compressor frequently propagates through a relatively long duct con-

taining a relatively steady shear flow. Hence, it can be argued that the prop-

agation terms appearing on the left sides of equations (6-13) and (6-14) will be

determined mainly by this large region of steady flow and not by the usually

much smaller region of unsteady flow in the vicinity of the fan.

On the other hand, the time-averaged pressure in a turbulent jet varies

relatively little with position and (upon making a suitable choice for the refer-

ence pressure p0 ) I1 can be thought of as a fluctuating quantity. But the tur-

bulence velocities in a jet are fairly small (usually less than 20 percent) com-

pared to the mean velocity. And since acoustic quantities are almost certainly

small, it is reasonable to neglect any terms on the left sides of equations

(6- 13) and (6- 14) involving products of fluctuating quantities compared _o the

terms involving products of fluctuating quantities with mean quantlti_s. -=hi._

again results in replacing v i by V i and c 2 by c-_. Physically, this

amounts to neglecting such effects as the scattering of sound by turbulence.

The turbulent scattering in a jet is generally regarded as small (ref. 5_ be-

cause of the mismatch between the turbulence scales and the acoustic wave-

lengths - the acoustic wavelength being for the most part much larger 2 (refs. 6

and 7). In fact, it has been found (ref. 8) that the introduction of a series of

vortex generators into the nozzle of a suDsonlc je_ _IA]._d [O ihl_liC,: _ 1_]_ .t ;.!" 'j ,j -

tivity pattern even though a noticeable increase in the volume of strong turbu-

lence is presumed to have resulted. But since the dominant effect of sca_er-

_ng should be to ohan_e the directivitv natterns, we tend to conclude that

9

"Except, of course, at high frequencies.
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3
scattering is not important over most of the spectrum.

Now consider the terms on the heft sides of equations (6-13) and (6-14).

In the absence of chemical reactions or other heat sources the energy equa-

tion can be written as

poD--.S-S= a K_O + 'I_

D-r 8Yi _Yi

where K is the thermal conductivity and • denotes the rate of energy dissi-

pation per unit volume through viscous effects. Thus, the second two terms

on the right sides of equation (6-13) and the last term on the right side of

equation (6-14) represent the effects of heat conduction and viscosity. Hence

(assuming that the Mach number is not too large) the arguments used in con-

nection with Lighthill's equation in section 2.2.3 show that these terms should

be negligible at the Reynolds numbers which are usually of interest in aerody-

namic sound problems.

Upon making these approximations in equations (6- 13) and (6- 14) (i. e.,

replacing v i by V i and c 2 by c-2 on the left sides and neglecting viscous

and heat conduction effects on the right sides) we obtain

D2[I a c 2 aII= tvj _v i

D_ -2 tYi _Yi _Yi _Yj

(6-16)

D_ kD72 8Yi 8Yi/ SYi 8Yj -_Yi

- 2 avj tv k _v i

_Yi _Yj 8Xk

(6- 17)

where D/D_- is defined by equation (6-15).

3This may not be true for multitube nozzles containing large numbers of tubes or

for the noise generated inside the nozzle.

393



AEROACOUSTICS

6.6 EQUATION BASED ON SEPARATION OF ACOUSTICAL

AND VORTICAL MOTIONS

It is shown in section 5.2 that it is always possible, in the linearized ap-

proximation, to decompose the velocity of an inviscid, non-heat-conducting,

flow into the sum of acoustical and vortical parts. Although it is still possible

to decompose the velocity of a nonlinear flow into solenoidal and irrotational

parts, it is no longer possible to associate the pressure fluctuations solely

with the irrotational term. As a consequence, there is no part of the velocity

which can be unambiguously identified with the acoustic motion. However, the

importance of being able to identify part of the fluid motion as sound becomes

clear when one realizes the basic question of how sound is generated in an un-

steady flow cannot be answered until it is determined what the sound is. In

using the acoustic analogy approach we do not attempt to answer this question

directly but rather to give an "analogue" of the sound generation process.

We shall, for simplicity, restrict our attention to a unidirectional trans-

versely sheared mean flow. Thus,

v i : 51iU(Y2) + v_ (6-18)

where v.' represents the fluctuating part (i.e. the part with zero mean flow)
1

of the velocity v i. Then

-- D O
D _ = _ + U_ (6-19)

D7 D7 _T _Yl

We suppose that the velocity can in some approximate sense still be de-

composed into acoustical and vortical parts. Thus, we put

g" : Cz + G" <5-20)

where _" is to be identified with the acoustic particle velocity and {_ is to be

identified with the vortical motion. It is reasonable to require that the sole-

noidal condition
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v. _ =o _6-21)

still apply. Thus, in the case of a subsonic turbulent jet we would associate

with the fluctuating turbulence velocity. And since the turbulence velocity

is at most 2 percent of the mean flow velocity, we would certainly want to im-

pose the incompressibility condition (6-21).

If equation (6-20) is substituted into equation (6-18) and the result is sub-

stituted into the right side of equation (6-16), a number of terms involving

various products of acoustic, _ean, and fluctuating vortical velocities will be

obtained. We suppose that the terms involving the squares of acoustic veloc-

ities are small and can therefore be neglected. The terms involving products

of turbulent velocities with acoustic velocities represent the scattering of the

sound by the vortical motion. Since we have already neglected such effects on

the left side of equation (6-16), itwill be assumed that these terms are also

negligible. With these approximations, equation (6-16) now becomes

(-_T -_1) 2 au 2 _ awj _w i
a + u H- c2_72II - 2 dU

dY2 aYl _Yi _Yi

(6-22)

h

where we have replaced c 2 by c 2 and put

W i = 51iU + w i (6-23)

equal to the total vortical velocity.

Notice that the direct refraction term

2 dU cu2

dY2 _Yl

has been removed from the source term in Phillips' equation and that the left

side of the resulting equation closely corresponds to the linearized equa-

tion (1- 15).

Lf the same approximaci.o_ls are also made 1_ the ,nomencum e,,:iua;:on (5-2)

(i. e., if viscous effects, terms involviag squares of acoustic quar.titics. ?.nd
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terms involving the interaction of the sound with the vortical motion are all

neglected), the Y2-component of this equation becomes

 -lwa + U u2 _c20 orl a +wi 2 (6-24)

aYl/ _Y2 aYi

We can now proceed as in section 1.2 and eliminate u 2 between equa-

tions (6-22) and (6-24) to obtain the third-order wave equation

+ U-----_ a +U a II- c V 2 + 2c dU a2IIayl/ dY 2 aY 1 aY2

aYg\ah _Yj/ aY2_Y1\a_ aYi/

Notice that, although the left side of this equation is the same as Lilley's

equation (6-17), the right side is somewhat different. It is shown in appen-

dix 6. A that this equation can also be written as

< 2wi c 62ii
cY i

F_2u12 __q
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where

F- a +U

aY 1

6.7 APPLICATION TO MIXING REGION OF A SUBSONIC JET

In this section equation (6-26) is used to calculate the sound emission

from the mixing region of a subsonic jet. The fluid mechanics of this region

is discussed in section 2.5.1.2. The procedure by which this is accomplished

is intermediate between Lighthill's free-space Green's function solution and

more exact approaches based on solving the convected wave equation.

It is shown in chapter 2 that the directivity pattern of the radiated sound

predicted by Lighthill's theory is predominantly determined by the convective

amplification factor (1 - M c cos 8) -5 which results from the relative motion

between the sound sources and the surrounding medium. But for sound whose

wavelength is very small compared with the dimensions of the jet, there ap-

pears to be no relative motion between the sound sources and the surrounding

medium, and the convective amplification should not occur. Thus, in a real

jet which is intermediate between this case and the one treated by Lighthill,

the convective factor ought to be considerably reduced for the sound emitted

at and above the peak frequency. In the present analysis the fact that the

sound sources are embedded in an actual jet flow is used to modify the source

term in Lighthill's analysis to account for this partial reduction in the con-

vective amplification.

Since the acoustic velocity _" should be negligible compared with the

vortical velocity W in the mixing region of the jet, we can approximate equa-

tion (6-24) in this region by

r- /.

2wi + 52ic0ii) = E + U
ay i aY 1

(6-27)

And since the factor dU/dy_ in the second term on the right side of equa-

tion (6-26) vanishes outside the mixing region, we can use the approximation
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(6-27) in this term to obtain

2

_Y1 dY2

(6-28)

The operator (a/sT) + u(a/ay 1) is the time derivative in a coordinate system

moving with the mean velocity U, which is shown in section 2.5.1.2 to be of

the order of the source convection velocity. This operator is therefore

roughly equivalent to a multiplication by the average angular frequency f_ of

the sound in a coordinate system moving with the sound sources. Hence,

within the jet the first term on the left side of equation (6-28) should be neg-

Ugible in comparison with the second whenever the wavelength 2_c0/_ is

large compared with the jet diameter. Since U vanishes outside the jet, the

operator (a,/_') + U(_/?y 1) reduces to the operator _/'_T in this region.

But the operator _/av is roughly equivalent to multiplication by the angular

frequency -_ of the sound in a fixed frame. Hence, the moving-medium wave

operator on the left side of equation (6-28) can be approximated by the free-

space wave operator

82 c2_2
2

CT

whenever the wavelengths 2_c0/_ and 2_c0/f_ are both large compared with

the jet diameter. Since the data of reference 9 show that these wavelengths

are typically 8 to 10 jet diameters, this approximation should not ..he too '.,.n-
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reasonable. Hence, we replace equation (6-281)by

.... (wiw j
Yi _Yj

+4-_ dU (-_+U-_yl) w 2
_Yl dY2

(6-29)

The solenoidal condition (6-21) implies that (e. g., section 5.3 of ref.

the vector potential

io)

A(_',t) = 1 V × f _--(Y--'t) d_

satisfies the relations

I

= V × A (6-30)

and

V.A=0

Hence, introducing the permutation tensor 4 ¢ij k and using equation (6-30) to

eliminate w 2 in the second term on the .]_ht side of equatien a_o9! show

(upon recalling that U is a function of Y2 only) that equation (6-29! can be

written in the more compact form

4:ij k = 0 if ", i, and k e.re not all different:
Qjk = 1 if i, j, k is acyclic permutation of 1, 2. 3;
cij k = -1 if 'i, j, k is an anticyclic permutation of 1. 2. 2.

399



AEROACOUSTICS

Yi ayj + _ iwj + 451iE2jk dY2-UAk 1

(6-31)

In a jet shear layer the mean velocity gradient dU/dy 2 is slowly varying over

the relatively narrow strip at the center of the mixing region where most of

the turbulence energy is concentrated (refs. 11 and 12). Thus, we assume

that dU/dy 2 = constant, and equation (6-31) now becomes

- c20v F - . + U 1]
cY i _Yj

(6-32)

where

0 = wiwj + dUTij 45 liE2jk _ A k (6- 33)
dY 2

Notice the resemblance between these equations and equations _2-5i and

(2-7), on which the theory of jet noise developed in chapter 2 is based. The

principal difference is that the source term in equation (6-32) is adjusted to

account for the fact that the sound sources are embedded in the flow field of

an actual jet.

The methods developed in sections 2.3 and 2.4 to calculate the sound

field from Lighthill's equation can also be applied to equation (6-32). This

was clone in reierence i3. Alter introducing .he n_._:,;ir.g-_am_: ,:_:':'_:_'i :i

tensor (2-26) and neglecting variations in retarded time and mean velocity

across an "eddy, " it was shown that the intensity spectrum L(x'! y') of the

sound emitted by a unit volume of turbulence located at the point y is given

by
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32n2c5(1 - M c cos 8)2
xixjxkX/x6 /_e//ei_TR+ijk_ d_ dc

(6-34)

where

= ¢0(1 - M c cos 8)

+ = - + ----_dU_2Qmn(_', _", 7)
Ruk/(_',_',z) Rijk/(y,_" , T) 1661i61kC2jm_2/n\dy2/

dU
+ 851ie2j m _ Qm,k/(y', _, 7)

dY 2

Rijk/(_,_', 7) - w.w.w:w'.l] K t - wiwj Wl_Wl

Qm, kl (_'' _'' -r) =- AmW:W'.Kt

n(y,s,7}-= A m nQm, - F A'

and the remaining quantities are defined in chapter 2.

reference 13 that the correlations Qm,k/ and ...Qm, n
terms of velocity correlations to obtain

It is also shown in

can be expressed in

2

/Ri+jk/ d_ =/Rijk/ d_- 8--_-5 - -(dl_" 1
!5 ii61k(52pSjq 52qSJP)(52rS/s- a2s°lrl\dv:/
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provided it can be assumed (as is done in section 2.5.1.1) that the mrbu!ence

is locally homogeneous and incompressible. Finally, after introducing the

joint normality hypothesis and assuming that the turbulence is isotropic (sec-

tion 2.5.1.1), it is found that the azimuthally averaged intensity T(._ _y'lav

(fig. 2-6) defined in section 2.5.1.1 now becomes

i(_" Y')av :
P0

16_2c5(1 _ M c

f;4 fR o 1
cos e)3x 2_-_T 4j 1111 -zT=0

(6-35)

where

A j_ =_

° )_3 \dY2/ _-_T4J 2 11 d_" :0

in the ratio of the maximum shear noise to the self-noise. The principal dif-

ference between this equation and the corresponding equation (2-391 obtained

from Lighthill's theory is that the convection factor is changed from

(1 - M c cos 0) -5 to (1 - M c cos 0) -3 .

Figures 6-1 and 6-2 are the same as figures 2-14 and 2-15 with actditional

curves corresponding to the new convection factor (1 - M c cos _-3 included.

The value oi M c remains unci]angeo. It can be seen'iutt d_e v._:,'_cti, n Mo-

tor obtained in this section is in better agreement with the data. Further

comparisons 5 were made xvith jets from circular, plug, and slot nozzles in

reference 14.

+
5In making the:_( cv)mpa_-isons..\ was set t, z,er:).
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Figure 0-i. - Experimentaldirectivity data of reference 22 of chapterZ
Jet nozzle diameter, 5. 08 centimeters(2 in. ).

By means of a totally different analysis, Jones (ref. 16) obtained a con-

vection factor (1 - M c cos 8) -3 for the shear-noise term while still retaining

the convection factor for the self-noise term. But since the shear noise is

always zero at 90 ° to the jet axis, his results do not agree particularly well

with experiment.
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Angle from jet axis, 8, d_

Figure 6-?_ - Experimental directivity data of reference 23 of chapter 2.
Jet nozzle diameter, 2, 54 centimeters (1 in. ).

6.8 SOLUTIONS OF PHILLIPS t AND LILLEY'S EQUATIONS

6.8.1 General Background

The best way of ensuring that the effects of the mean flow are properly

accounted for is to solve equations (6-16) and (6-17) with the correct velocity

profiles inserted into the left sides. This is a very difficult task and has not

as yeL been completely accomplished. However, in attempting to achieve this

goal a number of studies of the sound emission from various multipole sources

in idealized flows (chosen to more or Iess resemble that of a jet) have been

e3.rried out. Perhaps the earliest work along these lines was done bv Oottlieb

(ref. 16). He considered the sound emission from a monopole source em-

bedded in a uniform cylindrical flow field 6 (as illustrated in fig. 6-3). This

work was extended by Slutsky, Tamagno, and Moretti (refs. 17 to 19_ to in-

"Notice _}mL Lhe dil'eet Lcl'i':lcti,_ll tc,'m )n the h_It side of c1. (c_-j7_ i.: :'cr_ 1o_' i_i.-

type of flow. Hence, in this case. Lilley's and Phillips _ theories should lead to the

sam_. t'csul_s.
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,_ Observationpomt
/

X_

/- Jetboundary_.._

Source "_Jl J--"- Source point
po,nt _" _

Figure6-3.- Infinite cylindrical jet

clude quadrupole sources and distributions of sources. Some implications of

the infinite cylindrical jet solution are given in a recent paper by Mani

(ref. 20). The sound emission from a monopole source in a uniformly sheared

(linear velocity profile) two-dimensional flow (shown in fig. 6-4) was analyzed

by Graham (refs. 21 and 22). In fact, Phillips derived equation (6-13) to an-

alyze the sound emission from a two-dimensional shear layer. He used it to

analyze an arbitrary velocity profile but used a perturbation procedure to ob-

tain approximate solutions. Phillips' solutions were extended by Pao

(ref. 23).

Y2

Source point
@ "- Yl

Figure6-4. - Two-dimensionaluniformly _;hearedmean flow.
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6.8.2 Solutions for Two-Dimensional Planar Mean Flows

6.8.2.1 Reduction to ordinary differential equations. - The essential

feature which all these solutions have in common is that they are for unidirec-

tional transversely sheared mean flows which extend to infinity in two direc-

tions. This results in a great simplification, which allows equations (6- 16)

and (6-17) to be reduced to ordinary differential equations. We shall, for

simplicity, restrict our attention to planar flows (i.e., shear layers). (Cyl-

indrical flow can be treated by a similar procedure. ) The coefficients on the

left sides will then depend only on a single variable, say Y2' It can also be

assumed that 7 is a function only of Y2" Then equations (6-16) and (6-17)

become

_ _ c2(y2)

_Yi by

- t-_c2(y2 )_II
0y i 0y

(6-36)

8vj 5v i+ 2c 2 dU _21-1 = -2 _Vk

dY2 _Yl _Y2 ?-Yi c:yj _Yk

(6-37_

Before proceeding itis convenient to introduce the dimensionless variables

tUoc v. U°c Yi
T - , w. - 1 M =---, rli ,

L z U ' c 0 L

c2(y2 ) U(y 2)
A2(_}2 ) - , V012) - , _(_) = AII(y')

2 U.,.
c o
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where L denotes the thickness of the mixing layer (see fig. 6-5): and U_

and c O denote the mean velocity and'speed of sound above the layer. Equa-

tions (6-36) and (6-37) now become

(___ _iI 2 A 2 a2 _ AA"+ +--_ =qp
a V _ - M 2 a_i aT?i M 2

(6-38)

l
A 2 a2_ + AA'______'_1

M 2 aT/i _T/i M 2 ]

2A2V ' a2_ 2V'AA' _

M 2 _771 _72 M 2 _71
- qL (6-39)

Y2

U®

I-- I

Figure 6-5. - Shear layer.

= Yl
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where

8wj aw k _w i
qL = -2A _ -- --

_7 i 8_ i _7 k

are the dimensionless Phillips and Lilley source terms, respectively, and the

primes denote differentiation with respect to 72. Since the coefficients of

these equations depend only on 72 , it is natural to seek solutions by taking

Fourier transforms with respect to the remaining variables. Hence, upon

introducing the Fourier transforms

_(_', T) :/fP(_2,k', n)e -i(_''_'+nT) dl_ dn

q_(_', T) =//Qc_(_?2,k', n)e -i(_''_'+nT) dl_ dn for e = P, L

where k = (kl,k 3) is the wave vector in the plane of the shear laver zna _he

integrations are over all values of k" and frequency n, equations (6-38) and

(6-39) reduce to the ordinary differential equations

M 2 M 2
P" + (n + Vkl)2 - k 2 - P =- _ Qp (6-40)

A 2
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MI_2 )2 _ k 2 A" 2V'kl _I
2V'kl P'+ (n+ Vk I ---÷ P

n + Vk I A n + Vk I

iM 2

A2(n + Vk 1)

QL (6-41)

When the speed of sound is constant across the shear layer, A = 1. The prin-

cipal difference between these two equations is the first derivative term which

appears in Lilley's equation.

6.8.2.2 Numerical and exact solutions to Lilley's equation. - When

A = 1 and the source term is put equal to zero, Lilley's equation becomes

2V'kl [M2(n + Vkl)2 - k2]p = 0 (6-42_p" p' +

n+ Vk 1

This equation was first introduced by Pridmore-Brown (ref. 24) to study the

sound propagation in a duct containing a sheared flow. He solved the equation

approximately by using an asymptotic expansion valid for high frequencies.

Since then this problem has been studied by a large number of investigators

(refs. 25 to 34), most of whom have obtained numerical solutions. In fact,

aside from the trivial case where V = constant, there is only one velocity

distribution for which the solution to equation (6-42) can be expressed in terms

of known functions (ref. 35). This is the case of a constant shear (V' = con-

stant). Thus, introducing the new variables

= 21i-_l (n + klV)
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and

where

k 2
b =

-2iklMV'

into equation (6-42) shows that

=0

where the primes now denote differentiation with respect to _. We can easily

carry out the first integration and without loss of generality set the resulting

constant of integration to zero. But this shows that F satisfies Weber's

equation (ref. 36)

F"- (1 _2 + b)F =0

The general solution of this equation is an arbitrary linear combination of the

two parabolic cylinder functions D b_(1/2)(±_) of Weber which are defined,

for example, in references 36 to 38. Hence, the solutions to equation (6-42)

are linear combinations of the functions

p±(_) = i_eb_2/2 d e-b_2/2D b-- - - -b-(1/2 - -11/2d_ (1/2)(±_) = D' )(±_)_b_D b _(±_)
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where the prime on the D now denotes that the differentiation is to be carried

out with respect to the entire arg-ument ±$.

6.8.2.3 Application of Phillips' equation to high Mach number flows. -

In the general case, it is impossible to express the solutions to equations

(6-40) and (6-41) in terms of known functions. However, Phillips obtained

an approximate solution to equation (6-38) by performing an asymptotic ex-

pansion in inverse powers of the Mach number M. He applied this solution to

study the Mach wave radiation from a supersonic shear layer. The mean

velocity was assumed to approaTh -U_ (the negative of the velocity above the

shear layer) at large distances below the shear layer.

6.8.2.3.1 General properties of Mach waves: Before discussing his

solution to this problem, we shall consider a few features of Mach wave radia-

tion which can be deduced directly from equation (6-40). Thus, we can sup-

pose that the source term vanishes in the region _2 >> 1, well above the

shear layer. Then in this region Qp = 0, A = 1, and V = 1. Hence, equa-

tion (6-40) becomes

P"+IM2(n+kl)2-k21p =0

This is a simple linear equation with constant coefficients. It is well

known that its solution will either be exponentially increasing or decreasing

or oscillating (sines and cosines) depending on whether the coefficient of P is

positive or negative. But we must also require that the solutions remain

bounded as Y2 - o_ Hence, only exponentially decreasing or oscillating solu-

tions can occur. The exponentially decreasing solutions correspond to damped

waves which do not propagate into the far field, while the oscillatory solutions

represent propagating waves. Thus, the propagating waves correspond to

those whose frequencies n and wave numbers k" are such that

M2(n ÷ kl)2 k2- _" 0 (_-43 ;

Now consider a turbulent eddy which is moving along at some level in the

mixina layer, say $2 = Y" Its velocity will equal the convection velocity ? V c

7N¢_tice that V c is not necessarily equal to V(V).
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for this level. It is shown in section 2.5.2.1 that the Mach wave radiation de-

pends only on the convection of such eddies by the mean flow and not on the

turbulent fluctuations. Hence, in order to study this radiation, we can neglect

the evolution of the eddy pattern in time and assume that it remains frozen.

Thus, the frequency of the component of the turbulence with wave number k

must be equal to the frequency

n = -klV c

with which it is convected past a fixed observer. Hence, it follows from equa-

tion (6-43) that an eddy at the level Y can only radiate Mach waves if

M2k21(1 - Vc )2 > k 2 (6-44)

And upon introducing the angle

-1 kl
0 =COS --

k

between the wave vector 8 k" and the mean flow direction, equation (6-44)

becomes

Icos 0! > I

i M(1 - Vc) I

This shows that Mach waves _vill be radiated from those levels of the shear

layer where the difference between the convection velocity and the free-stream

velocity Uoc is greater than the speed of sound at infinity. Hence, for any

given level of the shear layer, the Mach waves can only be generated by tur-

bulence with wave numbers lying in the sector

!

r cos- i i [bO] <

• M(1 Vc) !

8This is the direction in which the sound wave pcopagates outside the shear !ayer.
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of wave number space shown in figure 6-6.

6.8.2.3.2 Asymptotic solutions to Phillips' equation: Phillips assumed

that the turbulent eddies would not be much larger than six times the width of

the mixing region. However, we have seen in section 2.5.2.5 that this is not

necessarily the case in supersonic jets. In any event he concluded from this

that the significant values of k would lie in the range k > 1. He then argued

that for such values of k the variation A"/A of the speed of sound was neg-

ligible compared with k 2 in equation (6-40). Although his assumption about

the eddy size may not be justified, we shall still follow Phillips and assume

that the term A"/A can be neglected. Equation (6-40) can then be written as

1 M2p,,+ M2(_2_k p=-_____Qp (6-45)

k 2

! _>,. /
I

I L t

J ,_ k 1

Figure 6-6. - Region of wave number space where Mach wave radiation is possible.
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where

¢= n+ Vk 1 (6-46)

Phillips considered the case where M 2 is large and k = O(1). In this limit,

the methods outlined in appendix 6. B can be used to obtain asymptotic expan-

sions of the solutions to equation (6-45). Whenever In f < Ikl',, c/A will

pass through zero at some value of _, say T/0. Then the coefficient of the

large parameter M 2 has a double zero at the turning point 770 and the prob-

lem is covered by case 2b in appendix 6. B. We therefore introduce the

change of variable

f _f_0 _(t) d_ 1/2

into equation (6-45) to obtain

d2k+ M2_2X gl(_)X+ h(_)
2

d_

(6-47)

where

gl(_ 2 +-- _ _ (4
2_' 4

h(_ ) : M2Qp

(_ ,_3/2A2

,)-2
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and

Since cr(T/) is very nearly constant outside the shear layer, it follows that

k2_ 2 2)
gl(_)=_+ O(4- as _ -

A 2

where

fcTI = lim cT(r/) for n

A=

lira a(r/) for 77

on the upper branch

on the lower branch

For this reason, Phillips changed tim expansion variable slightly from M t,o

2 k 2
H+=

with the upper sign holding for the upper branch. Inserting this into equa-

tion (6-47) shows that

where

d2_ ± 2c2X±+ _, = g_(_)x ± + h(_)
d_ 2

gt(_ = gl(_)-
k2_ 2

2

(6- 48)
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Treating the terms on the right as known and solving the remaining differen-

tial equations yield the Voltera integral equation (see ref. 2 for derivation)

f0 _ , t)[g+(t)x(t) h(t)] dt (6-49)X±(_) : S±(_ ) + K(_ +

where

and

K(_, t) -

c+[1 #_2\1/4j /1 #_2)+ c±[1 p_2)l/4j 1/4 p_2)

As explained in appendix 6. B the asymptotic expansions of equation (6-47_ are

given by the iterated solutions of equation (6-48). The first iteration is

X_ = H±(_) + _0 _ K(_,t)h(t) dt

The four arbitrary constants c;(i = 1,2) are determined by matching the up-

per and lower branches of the solution at _ : 00 and by satisfying the radia-

tion conditions at n = ±_. The details are ouite tedious a_rt ran be f,_v,':d :._

reference 2. After determining these constants it is shown that the asymptotic

expansion of the solution for large distances above the shear layer is given by
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p _ (° 3)_ exp(3'Ti)_)l/2 t I - X _/ _7]. 5/4 1/2 + h(7/0) exp ip+ or(q) d (6-50)
,ip+ (_+ 770

h(T/0) : -
M2Qp(_0 )

Fdv ]3/4

As anticipated in section 6.8.2.3.1, this solution has the form of an

outward-propagating wave (since _(y) is constant outside the shear zone). It

also shows that for a given frequency n and wave vector k" the pressure in

the radiation field depends only on the turbulent source at the critical layer,

where

n = -Vk 1

The procedure outlined in this section depends on the assumption that

k = O(1) and therefore that

k2 << 1

M 2

For the case where

9

k" = O(1)

M 2

equation i6-45)is otthe form (6-B1) with r = 0 and
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2 k 2 (n + Vkl)2 k 2

A 2 M 2 A 2 M 2

It therefore has two turning points separated by the dimensionless distance

k/M. These points cannot be treated independently. But it is necessary to

first obtain a solution within the "critical layer" between the two turning

points and then match this solution to the two asymptotic solutions outside the

critical layer. The procedure involved is quite complicated. The interested

reader can find a discussion of this type of problem on page 1103 of refer-

ence 39.

The remaining possibility is that k/M >> I. In this case the transition

points are said to be well separated. Separate WKBJ approximations of the

type described under case 2a of appendix 6. B can now be constructed in the

neighborhood of each turning point, and the boundary conditions can be applied

independently. Thus, the solution about the upper turning point must certainly

satisfy a radiation condition at _/2 = +0o. However, it has been shown by Pao

(ref. 40) that the remaining boundary condition is that the solution vanishes at

7/2 = -_o. The three cases k/M << 1, k/M = O(1), and k/M >> 1 are dis-

cussed in more detail by Pao in reference 23.

Notice that the peak Strouhal number fd/u for jet noise is approximately

0.2. Hence, K/M _ 1 and as a result the intermediate approximation

k/M -- O(1) should be more applicabie to jet noise than the low-frequency ap-

proximation k/M << 1 used by Phillips.

6.8.3 Flows of Finite Extent

All the solutions of the convected wave equations (6-16) and (6-17/ dis-

cussed up to now have been for transversely sheared unidirectional flows

(either shear layers or infinite cylindrical jets). In such flows the jet must

extend from _oo to +_. It has been argued by Schubert (refs. 41 and 42)

that the results of references 17 to 19 imply that the infinite cylindrical jet

model tends to considerably overpredict the observed directivity patterns of
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actual jets. Ribner 9 has attributed this to the fact that the nonuniform mean

flow refracts the sound field only slowly and requires distances of many wave-

lengths to cause significant refraction. Hence, the Slow decay with axial dis-

tance of the velocity field in an actual jet can have a significant effect on the

amount of refraction observed in the far field. In order to study the effects

of a mean flow on the radiated sound field, a number of experimental (refs. 8,

and 43 to 45) and analytical (refs. 41, 42, and 46) studies have been carried

out by Ribner and his coworkers at the University of Toronto.

The experiments coK'sisted of measuring the far-field directivity pattern
I0

of a harmonic point source placed within the potential core of an air jet.

The source was the orifice of a tube (-_ 1/16 in. inside diam) driven through a

conical coupling by a horn-type loudspeaker driver. With the jet turned off

the source radiates essentially omnidirectionally. Hence, the directivity pat-

terns observed with the jet turned on must be due to the effects of the mean
ii

flow. Typical results obtained with the source frequency equal to the peak

Strouhal number of the sound field emitted by the jet are shown in figure 6-7.

These investigations suggest that the observed dropoff, or cleft, in the noise

directivity patLern near the axis is due mainly to refraction.

The analytical studies were carried out (ref. 44) "to verify the refraction

interpretation analytically and at the same time extend the available data. "

Although these studies were purely numerical, they used mean velocity pro-

files corresponding closely to those observed in an actual jet (instead of the

highly idealized mean velocity profiles '-sed in previous studies,. Two types

of analyses were carried out, the first consisted of a study of the high-

frequency limit by using ray tracing methods, and the second consisted of a

finite difference solution of a convected wave equation. There have been some

objections raised (ref. 3) concerning the type of wave equation used by Schu-

bert since the direct refraction term is accounted for by formulating the prob-

lem in terms of Obukhov's quasipotential (ref. 47), which is based on the as-

sumption that the mean-flow Mach number is very small. An improven_ent ot

9personal communication.

101n some experiments the source was moved to the side of the core to determine

the effect of this displacement.

liThe e[fects ,)[ the turautenee on the ematted sound can pvobabl!,- b,: neglected for

the reasons Nven in section 6. 5.
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Mach

number,

M

'\

0 10 20 30

0o

Y

30 20 10 0

Sound level, dB

Figure 6-7. - Effect of jet velocity on directivity. Jet temperature, ambient; average effective source fre-

quency, 3000 hertz (fD/c • O.168); source position, on jet axis 2 nozzle diameters downstream of nozzle.
(From ref. 45. }

Schubert's analysis could therefore be obtained by using the convected wave

equation (1-20) with the mean velocity allowed to vary both in the transverse

and axial directions. Where comparisons of the analysis with experiments

were made, the agreement was generally good although the numerical results

did seem to exhibit somewhat more refraction.
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APPENDIX 6.A

DERIVATION OF EQUATION (6-26)

It follows, from equation (6-24) and the fact that U is a function of Y2

only, that the right side of equation (6-25) can be written as

+U-- _- ] +2 d---U-U

_Yl/\_Yj _Yi dY2 _Yl/

2 a du_aW2 aw2 _w2 /
_Yl dY2 _--_-T + U _ + w iaY 1 aYi/

(.,w,/+U-- _ 2 dU

aYl/\aYj aYi / dY2 C'Yl _Yi/

But since itfollows from equation (6-21) that

and that

w i

_w 2 _(wiw 2)

_Yi aYi

_w i _wj _ _2wiw j

_Yj aYi _Yi ayj

equation (6-25) becomes

+ 2c 2 dU t21-I

dY2 _Yl aY2

, j_Yl _Yi ayj

2 dU _2(w2wi)

dY2 _Yl _Yi
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And since

(Uwiw j)- 2 dU a
dY 2 c_Yi

dU _(w2wi_

dY2 _Yi J

(wiw2)- w__]

and

/
UV 2FI = _ Iv2uII -

_Yl aYl \

\

2 d_.U_U_II __d2U _

dY2 _Y2 dy_ 7
this equation can also be written as

2

2wi + c_52i11 -

_Yl _Yi

_d2ulw2
"_yl I'_ \ 2

1 LdY2

where

_Yl
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APPENDIX 6.B

ASYMPTOTIC SOLUTIONS TO STURM-LIOUVILLE EQUATION

In this appendix we shall discuss the asymptotic expansions as M - o_

of the solutions to the general Sturm-Liouville equation

P" + [M2q(_)+ r(7?_P = 0 (6-B1)

where q and r are arbitrary functions of 77.

6.B.1 Case 1: q(q) > 0

First, consider the case where q(_) is strictly positive. Liouville car-

ried out the asymptotic solutions for this case by introducing the new variables

X = _q(T/)] 1/4P

which transform equation (6-B1) into the equation

d2x + M2X = B(_)X (6-B2/

d_ 2

where

B : i q,--_£ r
4 q2 16 q3 q

and the primes denote differentiation with respect to _. By treating the terms

on the right side as known, we can solve the remaining linear inhomogeneous

equation with constant coefficients in the usual way to obtain the Voltera in-

tegral equation

423



AEROACOUSTICS

X : c I cos M_ + c2 sin M_ + 1 c#_ [sin M(_ - t_B(t)x(t)dt

M "a

where Cl, c2, and a are arbitrary constants. The method of successive

approximations yields a solution to this equation of the form (ref. 39)

oo

n=0

where

and

XO =c 1 cos M_ + c 2 sin M_

"[_ Esin M(_ - t]B(t)xn(t) dt
1

Xn+ 1 = M _a

This series converges and also represents an asymptotic expansion of the

solution in the limit as M - _. However, the iterated solution becomes ex-

tremely complicated ifone attempts to carry it much beyond the first itera-

tion.

Thus, the first approximation to the solution of equation (6-B1) is given

by

P= cl[q(B)1-1/4 cos [M/_ d_l+ c2[q(_?)] -1/4 sin IM/q_ dR]

(6-B3)

6.B.2 Case 2: q(r10) = 0 for Some Pointq0

If q(770) = 0 for any point _/= 70 , the asymptotic solution (6-B3) will have

a singularity at this point. But since 7/0 is not a singular point of equa-
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tion (6-BI), the solution to this equation must also not be sing-ular there.

Hence, equation (6-B3) cannot be an asymptotic representation of the solution

to equation (6-BI) in the neighborhood of any point where q(7?) = 0. The point

70 is called a turning point.

6. B. 2.1 Case 2a: q(_) has a simple zero at the turning point 70. -

First, consider the case where q07) has a simple zero at _0" Thus,

qb?)~ a07-7? 0) as _-77 0

Then for 77 near 7?0 equation (6-B1) can be approximated by the equation

P" + M2a0? - _0)P = 0 (6-B4)

The solutions to this equation can be expressed in terms of either Bessel

functions of order 1/3 or Airy functions.

Since the solution for case 1 was obtained by transforming equation (6-B1)

into one with approximately constant coefficients, it is natural, in the present

case, to attempt to find a solution to this equation in the neighborhood of -70

by transforming it approximately into the form (6-B4). Assume for definite-

ness that

Then upon introducing the new variables

" " 2/3

_0
for 77 > q0

for _ < 7/0
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and

equation (6-B1) becomes

where

d3_ (d2_ 2

B(_) I d______ 3 __ r

The procedure used to obtain the asymptotic solutions of equation (6-B2) can

also be applied to this equation. And if q(_) has no other zeros, the resulting

expansions will represent the solution over all space. This approach is re-

ferred to as the WKBJ approximation.

6. B. 2.2 Case 2b: q07) has a double zero at 770. Now suppose that q(_7)

has a double zero at 70. Thus,

q(n) ~ a(_ - 7?0 )2 as n -n o

Then for _ near _0 equation (6-B1) can be approximated by the equation

P" + M2a(_ - _0)2P = 0 (6-B5)

The solutions to this equation can be expressed as (1/4)th-order Bessel func-

tions. We suppose for definiteness that q(_) _ 0. Then in order to lransform
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equation (6-BI) approximately into the form (6-B5), we introduce tlle new

variables

1/2

7?O

and

t)- 1/4
frO

(6-B7)

where

_>--0

to obtain

d2x M2}2X B(_)X

d( 2

(6-B8)

where

6-B9)

and the primes denote differentiation with respect to 77. Then the procedure

used to obtain the asymptotic solutions of equation (6-B2) can be applied to

this equation.

Notice that the inverse transform
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of equation (6-B6) is double valued with one branch, which we shall call the

upper branch, corresponding to the region T/0 _< 77< oc and the other, which

we call the lower branch, to the region _oc < 77-< r/0.
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